ZTE Communications ›› 2021, Vol. 19 ›› Issue (1): 72-81.DOI: 10.12142/ZTECOM.202101009
• Research Paper • Previous Articles Next Articles
CAO Jiahao1,2(), MAO Xiaofei1,2, LI Dongfang1,2, ZHENG Qingfang1,2, JIA Xia1,2
Online:
2021-03-25
Published:
2021-04-09
About author:
CAO Jiahao (CAO Jiahao, MAO Xiaofei, LI Dongfang, ZHENG Qingfang, JIA Xia. Integrating Coarse Granularity Part-Level Features with Supervised Global-Level Features for Person Re-Identification[J]. ZTE Communications, 2021, 19(1): 72-81.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202101009
Method | Market-1501 | DukeMTMC-reID | CUHK03 | |||
---|---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | Rank-1/% | mAP/% | |
IDE[ | - | - | - | - | 22.2 | 21.0 |
PAN[ | - | - | - | - | 36.9 | 35.0 |
SVDNet[ | - | - | - | - | 40.9 | 37.8 |
IDE(R)+DM3[ | 73.4 | 51.8 | - | - | - | - |
MGCAM[ | 83.8 | 74.3 | - | - | 50.1 | 50.2 |
DHA-Net + ISO(Aggr)[ | 88.2 | 70.1 | 74.2 | 54.5 | - | - |
HA-CNN[ | 91.2 | 75.7 | 80.5 | 63.8 | 44.4 | 41.0 |
VPM[ | 93.0 | 80.8 | 83.6 | 72.6 | - | - |
SCP[ | 94.1 | - | 84.8 | - | - | - |
PCB+RPP[ | 93.8 | 81.6 | 83.3 | 69.2 | - | - |
SphereReID[ | 94.4 | 83.6 | 83.9 | 68.5 | - | - |
MGN[ | 95.7 | 86.9 | 88.7 | 78.4 | 68.0 | 67.4 |
DSA[ | 95.7 | 87.6 | 86.2 | 74.3 | 78.9 | 75.2 |
Pyramid[ | 95.7 | 88.2 | 89.0 | 79.0 | 78.9 | 76.9 |
SAN[ | 96.1 | 88.0 | 87.9 | 75.5 | 80.1 | 76.4 |
CGPN | 96.1 | 89.9 | 90.4 | 80.9 | 87.1 | 83.6 |
Table 1 Performance comparisons with the state-of-the-art results on Market-1501, DukeMTMC-reID and CUHK03 datasets in single query mode without re-ranking
Method | Market-1501 | DukeMTMC-reID | CUHK03 | |||
---|---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | Rank-1/% | mAP/% | |
IDE[ | - | - | - | - | 22.2 | 21.0 |
PAN[ | - | - | - | - | 36.9 | 35.0 |
SVDNet[ | - | - | - | - | 40.9 | 37.8 |
IDE(R)+DM3[ | 73.4 | 51.8 | - | - | - | - |
MGCAM[ | 83.8 | 74.3 | - | - | 50.1 | 50.2 |
DHA-Net + ISO(Aggr)[ | 88.2 | 70.1 | 74.2 | 54.5 | - | - |
HA-CNN[ | 91.2 | 75.7 | 80.5 | 63.8 | 44.4 | 41.0 |
VPM[ | 93.0 | 80.8 | 83.6 | 72.6 | - | - |
SCP[ | 94.1 | - | 84.8 | - | - | - |
PCB+RPP[ | 93.8 | 81.6 | 83.3 | 69.2 | - | - |
SphereReID[ | 94.4 | 83.6 | 83.9 | 68.5 | - | - |
MGN[ | 95.7 | 86.9 | 88.7 | 78.4 | 68.0 | 67.4 |
DSA[ | 95.7 | 87.6 | 86.2 | 74.3 | 78.9 | 75.2 |
Pyramid[ | 95.7 | 88.2 | 89.0 | 79.0 | 78.9 | 76.9 |
SAN[ | 96.1 | 88.0 | 87.9 | 75.5 | 80.1 | 76.4 |
CGPN | 96.1 | 89.9 | 90.4 | 80.9 | 87.1 | 83.6 |
Method | Occluded-DukeMTMC | |||
---|---|---|---|---|
Rank-1/% | Rank-5/% | Rank-10/% | mAP/% | |
HA-CNN[ | 34.4 | 51.9 | 59.4 | 26.0 |
PCB+RPP[ | 42.6 | 57.1 | 62.9 | 33.7 |
PGFA[ | 51.4 | 68.6 | 74.9 | 37.3 |
CGPN | 58.5 | 73.4 | 78.4 | 50.9 |
Table 2 Performance comparisons with the state-of-the-art results on Occluded-DukeMTMC dataset in single query mode without re-ranking.
Method | Occluded-DukeMTMC | |||
---|---|---|---|---|
Rank-1/% | Rank-5/% | Rank-10/% | mAP/% | |
HA-CNN[ | 34.4 | 51.9 | 59.4 | 26.0 |
PCB+RPP[ | 42.6 | 57.1 | 62.9 | 33.7 |
PGFA[ | 51.4 | 68.6 | 74.9 | 37.3 |
CGPN | 58.5 | 73.4 | 78.4 | 50.9 |
Method | Market-1501 | DuckMTMC-reID | CUHK03 | |||
---|---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | Rank-1/% | mAP/% | |
CGPN-1 | 94.9 | 87.9 | 89.3 | 78.4 | 82.4 | 79.9 |
CGPN-2 | 95.3 | 89.4 | 90.3 | 80.2 | 85.3 | 82.5 |
CGPN-3 | 94.2 | 86.2 | 88.6 | 76.9 | 84.3 | 81.0 |
CGPN-4 | 95.2 | 89.3 | 90.0 | 79.9 | 83.4 | 80.7 |
CGPN | 96.1 | 89.9 | 90.4 | 80.9 | 87.1 | 83.6 |
Table 3 Ablation study of CGPN coarse grained part-level feature strategy and supervised global part, with comparison results on Market-1501, DukeMTMC-reID and CUHK03-labeled at evaluation metrics of Rank-1 and mAP in single query mode without re-ranking
Method | Market-1501 | DuckMTMC-reID | CUHK03 | |||
---|---|---|---|---|---|---|
Rank-1/% | mAP/% | Rank-1/% | mAP/% | Rank-1/% | mAP/% | |
CGPN-1 | 94.9 | 87.9 | 89.3 | 78.4 | 82.4 | 79.9 |
CGPN-2 | 95.3 | 89.4 | 90.3 | 80.2 | 85.3 | 82.5 |
CGPN-3 | 94.2 | 86.2 | 88.6 | 76.9 | 84.3 | 81.0 |
CGPN-4 | 95.2 | 89.3 | 90.0 | 79.9 | 83.4 | 80.7 |
CGPN | 96.1 | 89.9 | 90.4 | 80.9 | 87.1 | 83.6 |
Model | Rank-1/% | mAP/% |
---|---|---|
Branch1-Global w/2-part supervised | 77.5 | 74.7 |
Branch1-Global w/3-part supervised | 78.2 | 74.5 |
Branch1-Global w/4-part supervised | 76.6 | 73.4 |
Branch1-Global w/8-part supervised | 76.1 | 73.5 |
Branch 1 | 82.9 | 79.4 |
Branch 2 | 81.8 | 79.2 |
Branch 3 | 82.6 | 78.7 |
Branch 2 & Branch 3 | 84.5 | 82.1 |
Branch 1 & Branch 3 | 83.6 | 81.1 |
Branch 1 & Branch 2 | 85.4 | 82.2 |
CGPN + Branch 4 | 85.4 | 82.4 |
CGPN + Branch 4 + Branch 5 | 85.8 | 82.6 |
CGPN | 87.1 | 83.6 |
Table 4 Comparison results of different number of 1×1 convolution layers in the global part and multi-branch settings on CUHK03 dataset at evaluation metrics of Rank-1 and mAP in single query mode without re-ranking
Model | Rank-1/% | mAP/% |
---|---|---|
Branch1-Global w/2-part supervised | 77.5 | 74.7 |
Branch1-Global w/3-part supervised | 78.2 | 74.5 |
Branch1-Global w/4-part supervised | 76.6 | 73.4 |
Branch1-Global w/8-part supervised | 76.1 | 73.5 |
Branch 1 | 82.9 | 79.4 |
Branch 2 | 81.8 | 79.2 |
Branch 3 | 82.6 | 78.7 |
Branch 2 & Branch 3 | 84.5 | 82.1 |
Branch 1 & Branch 3 | 83.6 | 81.1 |
Branch 1 & Branch 2 | 85.4 | 82.2 |
CGPN + Branch 4 | 85.4 | 82.4 |
CGPN + Branch 4 + Branch 5 | 85.8 | 82.6 |
CGPN | 87.1 | 83.6 |
1 | CHANG X B, HOSPEDALES T M, XIANG T. Multi⁃level factorisation net for person re⁃identification [EB/OL]. (2018⁃04⁃17) [2020⁃12⁃05]. |
2 |
LIU H, FENG J, QI M, et al. End⁃to⁃end comparative attention networks for person re⁃identification [J]. IEEE transactions on image processing, 2017, 26(7): 3492–3506. DOI: 10.1109/tip.2017.2700762
DOI |
3 |
SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose⁃sensitive embedding for person re⁃identification with expanded cross neighborhood re⁃ranking [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 420–429. DOI: 10.1109/cvpr.2018.00051
DOI |
4 |
SHEN Y T, LI H S, XIAO T, et al. Deep group⁃shuffling random walk for person re⁃identification [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 2265–2274. DOI:10.1109/CVPR.2018.00241
DOI |
5 |
WANG G S, YUAN Y F, CHEN X, et al. Learning discriminative features with multiple granularities for person re⁃identification [C]//Proceedings of the 26th ACM International Conference On Multimedia. Seoul, Korea: ACM, 2018: 274–282. DOI: 10.1145/3240508.3240552
DOI |
6 |
SUN Y F, ZHENG L, YANG Y, et al. Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline) [C]//Proceedings of the European Conference on Computer Vision. Munich, German: ECCV, 2018: 480–496. DOI: 10.1007/978-3-030-01225-0_30
DOI |
7 |
ZHENG F, DENG C, SUN X, et al. Pyramidal person re⁃identification via multi⁃loss dynamic training [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: CVPR, 2019: 8514–8522. DOI: 10.1109/cvpr.2019.00871
DOI |
8 |
SHEN Y, LIN W, YAN J, et al. Person re⁃identification with correspondence structure learning [C]//Proceedings of the IEEE international conference on computer vision. Santiago, Chile: IEEE, 2015: 3200–3208. DOI: 10.1109/iccv.2015.366
DOI |
9 |
VARIOR R R, SHUAI B, LU J W, et al. A siamese long short⁃term memory architecture for human re⁃identification [C]//European Conference on Computer Vision. Amsterdam, Netherlands, ECCV, 2016: 135–153. DOI: 10.1007/978-3-319-46478-7_9
DOI |
10 |
ZHENG L, HUANG Y J, LU H C, et al. Pose⁃invariant embedding for deep person re⁃identification [J]. IEEE transactions on image processing, 2019, 28(9): 4500–4509. DOI: 10.1109/tip.2019.2910414
DOI |
11 |
LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re⁃identification [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 152–159. DOI:10.1109/CVPR.2014.27
DOI |
12 |
YI D, LEI Z, LIAO S C, et al. Deep metric learning for person re⁃identification [C]//2014 22nd International Conference on Pattern Recognition. Stockholm, Sweden: IEEE, 2014: 34–39. DOI: 10.1109/icpr.2014.16
DOI |
13 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA: CVPR, 2016: 770–778. DOI: 10.1109/cvpr.2016.90
DOI |
14 |
LI W, ZHU X T, GONG S G. Harmonious attention network for person re⁃identification [C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: CVPR, 2018: 2285–2294. DOI: 10.1109/cvpr.2018.00243
DOI |
15 |
LI D W, CHEN X T, ZHANG Z, et al. Learning deep context⁃aware features over body and latent parts for person re⁃identification [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: CVPR, 2017: 7398–7407. DOI: 10.1109/CVPR.2017.782
DOI |
16 |
ZHAO L M, LI X, ZHUANG Y T, et al. Deeply⁃learned part⁃aligned representations for person re⁃identification [C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy: IEEE, 2017: 3219–3228. DOI:10.1109/iccv.2017.349
DOI |
17 | JADERBERG M, SIMONYAN K, ZISSERMAN A. Spatial transformer networks [C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Montreal, Canada, 2015: 2017–2025 |
18 |
LI S, BAK S, CARR P, et al. Diversity regularized spatiotemporal attention for video⁃based person re⁃identification [C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 369–378. DOI: 10.1109/CVPR.2018.00046
DOI |
19 |
XU J, ZHAO R, ZHU F, et al. Attention⁃aware compositional network for person re⁃identification [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: CVPR, 2018: 2119–2128. DOI: 10.1109/cvpr.2018.00226
DOI |
20 |
SARFRAZ M S, SCHUMANN A, EBERLE A, et al. A pose⁃sensitive embedding for person re⁃identification with expanded cross neighborhood re⁃ranking [C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: CVPR, 2018: 420–429. DOI: 10.1109/CVPR.2018.00051
DOI |
21 | HUANG H J, YANG W J, CHEN X T, et al. EANet: enhancing alignment for cross⁃domain person re⁃identification [EB/OL]. (2018⁃12⁃19) [2020⁃12⁃05]. |
22 |
MIAO J X, WU Y, LIU P, et al. Pose⁃guided feature alignment for occluded person re⁃identification [C]//2019 IEEE International Conference on Computer Vision. Seoul, South Korea: IEEE, 2019: 542–551. DOI:10.1109/ICCV.2019.00063
DOI |
23 | HERMANS A, BEYER L, LEIBE B. In defense of the triplet loss for person re⁃identification [EB/OL]. (2017⁃03⁃22)[2020⁃12⁃12]. |
24 |
ZHENG L, SHEN L Y, TIAN L, et al. Scalable person re⁃identification: A benchmark [C]//2015 IEEE International Conference on Computer Vision. Santiago, Chile: IEEE, 2015: 1116–1124. DOI: 10.1109/ICCV.2015.133
DOI |
25 |
RISTANI E, SOLERA F, ZOU R, et al. Performance measures and a data set for multi⁃target, multi⁃camera tracking [C]//European Conference on Computer Vision. Amsterdam, Netherlands: ECCV, 2016: 17–35. DOI: 10.1007/978-3-319-48881-3_2
DOI |
26 |
LI W, ZHAO R, XIAO T, et al. DeepReID: deep filter pairing neural network for person re⁃identification [C]//2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA: IEEE, 2014: 152–159. DOI:10.1109/CVPR.2014.27
DOI |
27 | FELZENSZWALB P, MCALLESTER D, RAMANAN D. discriminatively trainedA, multiscale, deformable part model [C]//2008 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2008: 1–8. DOI: 10.1109/CVPR.2008.4587597 |
` | |
28 |
ZHONG Z, ZHENG L, CAO D L, et al. Re⁃ranking person re⁃identification with k⁃reciprocal encoding [C]//2017 IEEE Conference on Computer Vision and Pattern Recognition. Honolulu, USA: IEEE, 2017: 3652–3661. DOI:10.1109/CVPR.2017.389
DOI |
29 | ZHENG L, YANG Y, HAUPTMANN A G. Person re⁃identification: past, present and future [EB/OL]. [2020⁃12⁃05]. |
30 |
ZHENG Z D, ZHENG L, YANG Y. Pedestrian alignment network for large⁃scale person re⁃identification [J]. IEEE transactions on circuits and systems for video technology, 2019, 29(10): 3037–3045. DOI:10.1109/TCSVT.2018.2873599
DOI |
31 |
SUN Y F, ZHENG L, DENG W J, et al. SVDNet for pedestrian retrieval [C]//2017 IEEE International Conference on Computer Vision. Venice, Italy: IEEE, 2017: 3820–3828. DOI: 10.1109/ICCV.2017.410
DOI |
32 |
WANG Z, HU R M, CHEN C, et al. Person re⁃identification via discrepancy matrix and matrix metric [J]. IEEE transactions on cybernetics, 2018, 48(10): 3006⁃3020. DOI: 10.1109/TCYB.2017.2755044
DOI |
33 |
SONG C F, HUANG Y, OUYANG W L, et al. Mask⁃guided contrastive attention model for person re⁃identification [C]//2018 IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City, USA: IEEE, 2018: 1179–1188. DOI: 10.1109/CVPR.2018.00129
DOI |
34 |
WANG Z, JIANG J J, WU Y, et al. Learning sparse and identity⁃preserved hidden attributes for person re⁃identification [J]. IEEE transactions on image processing, 2019, 29: 2013⁃2025. DOI: 10.1109/TIP.2019.2946975
DOI |
35 |
SUN Y F, XU Q, LI Y L, et al. Perceive where to focus: Learning visibility⁃aware part⁃level features for partial person re⁃identification [C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 393–402. DOI: 10.1109/CVPR.2019.00048
DOI |
36 |
FAN X, LUO H, ZHANG X, et al. SCPNet: spatial⁃channel parallelism network for joint holistic and partial person re⁃identification [C]//Asian Conference on Computer Vision. Perth, Australia: ACCV, 2018: 19–34. DOI: 10.1007/978-3-030-20890-5_2
DOI |
37 |
FAN X, JIANG W, LUO H, et al. SphereReID: Deep hypersphere manifold embedding for person re⁃identification [J]. Journal of visual communication and image representation, 2019, 60: 51–58. DOI: 10.1016/j.jvcir.2019.01.010
DOI |
38 |
ZHANG Z Z, LAN C L, ZENG W J, et al. Densely semantically aligned person re⁃identification [C]//2019 IEEE Conference on Computer Vision and Pattern Recognition. Long Beach, USA: IEEE, 2019: 667–676. DOI:10.1109/CVPR.2019.00076
DOI |
39 | JIN X, LAN C L, ZENG W J, et al. Semantics⁃aligned representation learning for person re⁃identification [EB/OL]. (2019⁃05⁃30) [2020⁃12⁃05]. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||