ZTE Communications ›› 2020, Vol. 18 ›› Issue (3): 49-56.DOI: 10.12142/ZTECOM.202003008
• Special Topic • Previous Articles Next Articles
LIU Xin1, CHEN Wenhua1(), WANG Dehan1, NING Dongfang2
Received:
2019-12-12
Online:
2020-09-25
Published:
2020-11-03
About author:
LIU Xin received the B.S. degree in electronic information science and technology from Xidian University, China in 2017. She is currently pursuing the Ph.D. degree at Department of Electronic Engineering, Tsinghua University, China. Her current research interests include the behavioral modeling and digital predistortion for RF power amplifiers.|CHEN Wenhua (Supported by:
LIU Xin, CHEN Wenhua, WANG Dehan, NING Dongfang. Robust Digital Predistortion for LTE/5G Power Amplifiers Utilizing Negative Feedback Iteration[J]. ZTE Communications, 2020, 18(3): 49-56.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202003008
Scenario | Without DPD | Proposed DPD | DL DPD | IDL DPD |
---|---|---|---|---|
ACPR/dBc (±100 MHz) | -33.31/-34.42 | -45.26/-45.25 | -44.06/-44.37 | -41.48/-42.41 |
Table 1 Measured performance in single band scenario
Scenario | Without DPD | Proposed DPD | DL DPD | IDL DPD |
---|---|---|---|---|
ACPR/dBc (±100 MHz) | -33.31/-34.42 | -45.26/-45.25 | -44.06/-44.37 | -41.48/-42.41 |
Scenario | Lower Band | Upper Band | ||
---|---|---|---|---|
Without DPD | Proposed DPD | Without DPD | Proposed DPD | |
ACPR/dBc (±10 MHz) | -28.28/-28.81 | -51.71/-51.45 | -30.26/-29.43 | -54.04/-53.33 |
Table 2 Measured performance in dual-band scenario
Scenario | Lower Band | Upper Band | ||
---|---|---|---|---|
Without DPD | Proposed DPD | Without DPD | Proposed DPD | |
ACPR/dBc (±10 MHz) | -28.28/-28.81 | -51.71/-51.45 | -30.26/-29.43 | -54.04/-53.33 |
1 |
DING L, ZHOU G T, MORGAN D R, et al. A robust digital baseband predistorter constructed using memory polynomials [J]. IEEE transactions on communications, 2004, 52(1): 159–165. DOI:10.1109/tcomm.2003.822188
DOI |
2 |
KIM J, KONSTANTINOU K. Digital predistortion of wideband signals based on power amplifier model with memory [J]. Electronics Letters, 2001, 37(23): 1417. DOI:10.1049/el:20010940
DOI |
3 |
ZHU A D, PEDRO J C, BRAZIL T J. Dynamic deviation reduction⁃based Volterra behavioral modeling of RF power amplifiers [J]. IEEE transactions on microwave theory and techniques, 2006, 54(12): 4323–4332. DOI:10.1109/tmtt.2006.883243
DOI |
4 |
HAMMI O, GHANNOUCHI F M, VASSILAKIS B. A compact envelope⁃memory polynomial for RF transmitters modeling with application to baseband and RF⁃digital predistortion [J]. IEEE Microwave and wireless components letters, 2008, 18(5): 359–361. DOI:10.1109/lmwc.2008.922132
DOI |
5 |
MORGAN D R, MA Z, KIM J, et al. A generalized memory polynomial model for digital predistortion of RF power amplifiers [J]. IEEE transactions on signal processing, 2006, 54(10): 3852–3860. DOI:10.1109/tsp.2006.879264
DOI |
6 |
GHANNOUCHI F M, HAMMI O. Behavioral modeling and predistortion [J]. IEEE microwave magazine, 2009, 10(7): 52–64. DOI:10.1109/mmm.2009.934516
DOI |
7 |
ZHOU D Y, DEBRUNNER V E. Novel Adaptive nonlinear predistorters based on the direct learning algorithm [J]. IEEE transactions on signal processing, 2007, 55(1): 120–133. DOI:10.1109/tsp.2006.882058
DOI |
8 |
PAASO H, MAMMELA A. Comparison of direct learning and indirect learning predistortion architectures [C]//IEEE International Symposium on Wireless Communication Systems. Reykjavik, Iceland: IEEE, 2008: 309–313. DOI:10.1109/iswcs.2008.4726067
DOI |
9 |
AMIN S, ZENTENO E, LANDIN P N, et al. Noise impact on the identification of digital predistorter parameters in the indirect learning architecture [C]//Swedish Communication Technologies Workshop. Lund, Sweden: IEEE, 2012: 36–39. DOI:10.1109/swe-ctw.2012.6376285
DOI |
10 |
DING L, MUJICA F, YANG Z G. Digital predistortion using direct learning with reduced bandwidth feedback [C]//IEEE MTT⁃S International Microwave Symposium Digest. Seattle, USA: IEEE, 2013: 1–3. DOI:10.1109/mwsym.2013.6697388
DOI |
11 |
LIU X, CHEN W H, CHEN L, et al. A robust and broadband digital predistortion utilizing negative feedback iteration [C]//IEEE MTT⁃S International Wireless Symposium (IWS). Chengdu, China: IEEE, 2018: 1–4. DOI:10.1109/ieee-iws.2018.8400950
DOI |
12 |
WU X F, SHI J H, CHEN H H. On the numerical stability of RF power amplifier’s digital predistortion [C]//15th Asia⁃Pacific Conference on Communications. Shanghai, China: IEEE, 2009: 430–433. DOI:10.1109/apcc.2009.5375601
DOI |
13 |
BASSAM S A, HELAOUI M, GHANNOUCHI F M. 2⁃D digital predistortion architecture for concurrent dual⁃band transmitters [J]. IEEE transactions on microwave theory and techniques, 2011, 59(10): 2547–2553. DOI:10.1109/tmtt.2011.2163802
DOI |
14 |
LIU Y J, CHEN W H, ZHOU J, et al. Digital predistortion for concurrent dual⁃band transmitters using 2D modified memory polynomials [J]. IEEE transactions on microwave theory and techniques, 2013, 61(1): 281–290. DOI:10.1109/tmtt.2012.2228216
DOI |
15 |
CHEN W H, BASSAM S A, LI X, et al. Design and linearization of concurrent dual⁃band doherty power amplifier with frequency⁃dependent power ranges [J]. IEEE transactions on microwave theory and techniques, 2011, 59(10): 2537–2546. DOI:10.1109/tmtt.2011.2164089
DOI |
[1] | LI Hanwen, BI Ningjing, SHA Jin. Design of Raptor-Like LDPC Codes and High Throughput Decoder Towards 100 Gbit/s Throughput [J]. ZTE Communications, 2023, 21(3): 86-92. |
[2] | DING Jianwen, LIU Yao, LIAO Hongjian, SUN Bin, WANG Wei. Statistical Model of Path Loss for Railway 5G Marshalling Yard Scenario [J]. ZTE Communications, 2023, 21(3): 117-122. |
[3] | SHI Xiangyi, HAN Tongzhou, TIAN Hai, ZHAO Danfeng. Design of Raptor-Like Rate Compatible SC-LDPC Codes [J]. ZTE Communications, 2022, 20(S1): 16-21. |
[4] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[5] | HOU Xiaolin, LI Xiang, WANG Xin, CHEN Lan, SUYAMA Satoshi. Some Observations and Thoughts about Reconfigurable Intelligent Surface Application for 5G Evolution and 6G [J]. ZTE Communications, 2022, 20(1): 14-20. |
[6] | YAN Xincheng, TENG Huiyun, PING Li, JIANG Zhihong, ZHOU Na. Study on Security of 5G and Satellite Converged Communication Network [J]. ZTE Communications, 2021, 19(4): 79-89. |
[7] | LIU Haipeng, ZHANG Xingyue, ZHOU Anfu, LIU Liang, MA Huadong. Indoor Environment and Human Sensing via Millimeter Wave Radio: A Review [J]. ZTE Communications, 2021, 19(3): 22-29. |
[8] | XIAO Kai, LIU Xing, HAN Xianghui, HAO Peng, ZHANG Junfeng, ZHOU Dong, WEI Xingguang. Flexible Multiplexing Mechanism for Coexistence of URLLC and EMBB Services in 5G Networks [J]. ZTE Communications, 2021, 19(2): 82-90. |
[9] | LIU Zhuang, GAO Yin, LI Dapeng, CHEN Jiajun, HAN Jiren. Enabling Energy Efficiency in 5G Network [J]. ZTE Communications, 2021, 19(1): 20-29. |
[10] | ZHANG Jing, WEI Xiao, CHENG Junfeng, FENG Xu. Satellite E2E Network Slicing Based on 5G Technology [J]. ZTE Communications, 2020, 18(4): 26-33. |
[11] | LI Yezhen, REN Yongli, YANG Fan, XU Shenheng, ZHANG Jiannian. A Novel 28 GHz Phased Array Antenna for 5G Mobile Communications [J]. ZTE Communications, 2020, 18(3): 20-25. |
[12] | CHANG Su-Wei, LIN Chueh-Jen, TSAI Wen-Tsai, HUNG Tzu-Chieh, HUANG Po-Chia. Design of Millimeter-Wave Antenna-in-Package (AiP) for 5G NR [J]. ZTE Communications, 2020, 18(3): 26-32. |
[13] | HE Yejun, JIANG Jiachun, ZHANG Long, LI Wenting, WONG Sai-Wai, DENG Wei, CHI Baoyong. Leaky-Wave Antennas for 5G/B5G Mobile Communication Systems: A Survey [J]. ZTE Communications, 2020, 18(3): 3-11. |
[14] | XIA Chenhui, WANG Gang, WANG Bo, MING Xuefei. Integrated 3D Fan-out Package of RF Microsystem and Antenna for 5G Communications [J]. ZTE Communications, 2020, 18(3): 33-41. |
[15] | GONG Shuhong, ZHANG Xingmin, DOU Jianwu, HUANG Weifang. Non‑Negligible Influences of Rain on 5G Millimeter Wave Terrestrial Communication System [J]. ZTE Communications, 2020, 18(3): 64-70. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||