ZTE Communications ›› 2017, Vol. 15 ›› Issue (S2): 3-10.doi: 10.3969/j.issn.1673-5188.2017.S2.001
• Special Topic • Previous Articles Next Articles
LI Wen
Received:
2017-08-02
Online:
2017-12-25
Published:
2020-04-16
About author:
LI Wen (wenli@psy.fsu.edu) is an associate professor of Psychology and Neuroscience and the director of the Cognitive Affective Neuroscience Laboratory, Florida State University, USA. She received her Ph. D. in psychology from Northwestern University (USA) in 2004 and completed postdoctoral training in neuroscience at the Medical School of Northwestern University in 2008. Her research centers on the interaction between emotion and cognition and their implications in psychopathology. Dr. LI has won multiple awards including a Moskowitz Jacobs Inc. Award (equivalent to Young Investigator Award) from the Association for Chemoreception Sciences. She had received research support from the National Institute of Health (R01) and the Department of Defense. Dr. LI currently serves as a standing member of the Cognition ad Perception Study Section for the National Institute of Health, USA.
Supported by:
LI Wen. How Do Humans Perceive Emotion?[J]. ZTE Communications, 2017, 15(S2): 3-10.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
Figure 1.
The time course of human emotion perception. a) The GFP demonstrates five critical ERPs evoked by faces. b) Evoked P1 at the occipital midline by the neutral face and six levels of fear (15%-45% in increments of 6%). c) Three ERPs evoked at the parietal midline by the faces. d) Psychometric and neurometric modeling of fear detection performance and ERPs in a fear detection task maps out four key operations unfolding in sequence, emotion categorization, detection, valuation and conscious awareness. Adapted from Forscher et al., 2016."
[1] | C. R. Darwin , The Expression of the Emotions in Man and Animals, 1 ed. London, UK: John Murray, 1872. |
[2] | A. F. Shariff and J.L. Tracy , “What are emotion expressions for?” Current Directions in Psychological Science, vol. 20, no. 6, no. 395-399, Dec. 2011. doi: 10.1177/0963721411424739. |
[3] | C. E. Izard , The Face of Emotions. New York, USA: Appleton-Century-Crofts, 1971. |
[4] | A. J. Fridlund , Human Facial Expression: An Evolutionary View. San Diego, USA: Academic Press, 1994. |
[5] | R. E. Kraut and R. E. Johnston , “Social and emotional messages of smiling: an ethological approach,” Journal of Personality and Social Psychology, vol. 37, no. 9, pp. 1539-1553, 1979. |
[6] | A. D. Kramer, J. E. Guillory, J. T. Hancock , “Experimental evidence of massive-scale emotional contagion through social networks,” Proceedings of the National Academy of Sciences of the United States of America, vol. 111, pp. 8788-8790, Jun. 2014. doi: 10.1073/pnas.1320040111. |
[7] | J. H. Fowler and N. A. Christakis , “Dynamic spread of happiness in a large social network: longitudinal analysis over 20 years in the framingham heart study,” BMJ, vol. 337, article no. a2338. doi: 10.1136/bmj.a2338. |
[8] | A. R. Damasio , “Descartes’error and the future of human life,” Scientific American, vol. 271, no. 4, p. 144, Oct. 1994. |
[9] | R. W. Picard , Affective Computing. Cambridge, USA: The MIT Press, 1997, vol.167, p. 170. |
[10] | U. Dimberg , “Facial reactions to facial expressions,” Psychophysiology, vol. 19, no. 6, pp. 643-647, Nov. 1982. doi: 10.1111/j.1469-8986.1982.tb02516.x. |
[11] | P. Vuilleumier and G. Pourtois , “Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging,” Neuropsychologia, vol. 45, no. 1, pp. 174-194, 2007. doi: 10.1016/j.neuropsychologia.2006.04.0223. |
[12] | M. Eimer, A. Holmes , “Event-related brain potential correlates of emotional face processing,” Neuropsychologia, vol. 45, no. 1, pp. 15-31, 2007. doi: 10.1016/j.neuropsychologia.2006.04.022. |
[13] | T. Flaisch, and H. T. Schupp , “Tracing the time course of emotion perception: the impact of stimulus physics and semantics on gesture processing,” Social Cognitive and Affective Neuroscience, vol. 8, no. 7, pp. 820-827, Jul. 2013. doi: 10.1093/scan/nss073. |
[14] | E. C. Forscher, W. Li , “Hemispheric asymmetry and visuo-olfactory integration in perceiving subthreshold (micro) fearful expressions,” The Journal of Neuroscience, vol. 32, no. 6, pp. 2159-2165, Feb. 2012. doi: 10.1523/JNEUROSCI.5094-11. |
[15] | H. Kawasaki, N. Tsuchiya, C. K. Kovach , et al., “Processing of facial emotion in the human fusiform gyrus,” Journal of Cognitive Neuroscience, vol. 24, no. 6, pp. 1358-1370, Jun. 2012.doi: 10.1162/jocn_a_00175. |
[16] | E. Redcay and T. A. Carlson , “Rapid neural discrimination of communicative gestures,” Social Cognitive and Affective Neuroscience, vol. 10, no. 4, pp. 545-551, Apr. 2015. doi: 10.1093/scan/nsu089. |
[17] | W. Li, R. E. Zinbarg, S. G. Boehm, K. A. Paller , “Neural and behavioral evidence for affective priming from unconsciously perceived emotional facial expressions and the influence of trait anxiety,” Journal of Cognitive Neuroscience , vol. 20, no. 1, pp. 95-107, Jan. 2008. doi: 10.1162/jocn.2008.20006. |
[18] | S. Bentin, T. Allison, A. Puce, E. Perez, G. McCarthy , “Electrophysiological studies of face perception in humans,” Journal of Cognitive Neuroscience, vol. 8, no. 6, pp. 551-565, Nov. 1996. doi: 10.1162/jocn.1996.8.6.551. |
[19] | E. Halgren, T. Raij, K. Marinkovic, V. Jousmaki, R. Hari , “Cognitive response profile of the human fusiform face area as determined by MEG,” Cerebral Cortex, vol. 10, no. 1, pp. 69-81, Jan. 2000. doi: doi.org/10.1093/cercor/10.1.69. |
[20] | M. J. Farah, K. D. Wilson, M. Drain, J. N. Tanaka , “What is ‘ special’ about face perception?” Psychological Review vol. 105, no. 3, pp. 482-498, Jul. 1998. |
[21] | C. J. Mondloch, T. L. Lewis, D. Robert , et al., “Face perception during early infancy,” Psychological Science, vol. 10, no. 5, pp. 419-422, Sept. 1999. doi: 10.1111/1467-9280.00179. |
[22] | M. H. Johnson, S. Dziurawiec, H. Ellis, J. Morton , “Newborns’preferential tracking of face-like stimuli and its subsequent decline,” Cognition, vol. 40, no. 1-2, pp. 1-19, Aug. 1991. |
[23] | Y. Sugita , “Face perception in monkeys reared with no exposure to faces,” Proceedings of the National Academy of Sciences. vol. 105, no. 1, pp. 394-398, 2008. doi: 10.1073/pnas.0706079105. |
[24] | C. H. Hansen and R. D. Hansen , “Finding the face in the crowd: an anger superiority effect,” Journal of Personality and Social Psychology, vol. 54, no. 6, pp. 917-924, Jul. 1988. doi: 10.1037/0022-3514.54.6.917. |
[25] | A. Öhman, D. Lundqvist, F. Esteves , “The face in the crowd revisited: a threat advantage with schematic stimuli,” Journal of Personality and Social Psychology, vol. 80, no.3, pp. 381-396, Mar. 200). doi: 10.1037/0022-3514.80.3.381. |
[26] | E. Fox, V. Lester, R. Russo , et al. “Facial expressions of emotion: are angry faces detected more efficiently?” Cognition Emotion, vol. 14, no. 1, ppl. 61-92, Jan. 2000. doi: 10.1080/026999300378996. |
[27] | A. Öhman, P. Juth, D. Lundqvist , “Finding the face in a crowd: Relationships between distractor redundancy, target emotion, and target gender,” Cognition and Emotion, vol. 24, no. 7, pp. 1216-1228, 2010. doi: 10.1080/02699930903166882. |
[28] | E. Fox and L. Damjanovic , “The eyes are sufficient to produce a threat superiority effect,” Emotion, vol. 6, no. 3, pp. 534-539, Aug. 2006. doi: 10.1037/1528-3542.6.3.534. |
[29] | M. G. Calvo and L. Nummenmaa , “Detection of emotional faces: salient physical features guide effective visual search,” Journal of Experimental Psychology: General, vol. 137, no. 3, pp. 471-494, Aug. 2008. doi: 10.1037/a0012771. |
[30] | P. Juth, D. Lundqvist, A. Karlsson, A. Öhman , “Looking for foes and friends: perceptual and emotional factors when finding a face in the crowd,” Emotion, vol. 5, no. 4, pp. 379-395, Dec. 2005. doi: 10.1037/1528-3542.5.4.379. |
[31] | P. Rozin and A. E. Fallon , “A perspective on disgust,” Psychological Review, vol. 94, no. 1, pp. 23-41, Jan. 1987. |
[32] | E. A. Krusemark and W. Li , “Do all threats work the same way? Divergent effects of fear and disgust on sensory perception and attention,” The Jounal of Neuroscience, vol. 31, no. 9, pp. 3429-3434, Mar. 2011. doi: 10.1523/JNEUROSCI.4394-10.2011. |
[33] | E. A. Krusemark and W. Li , “Enhanced olfactory sensory perception of threat in anxiety: an event-related fMRI study,” Chemosens Percept, vol. 5, no. 1, pp. 37-45, Mar. 2012. doi: 10.1007/s12078-011-9111-7. |
[34] | Y. You and W. Li , “Parallel processing of general and specific threat during early stages of perception,” Social Cognitive Affective Neuroscience, vol. 11, no. 3, pp. 395-404, 2016. doi: 10.1093/scan/nsv123. |
[35] | D. Sabatinelli, E. E. Fortune, Q. Li , et al., “Emotional perception: meta-analyses of face and natural scene processing,” Neuroimage, vol. 54, no. 3, pp. 2524-2533, Feb. 2011. doi: 10.1016/j.neuroimage.2010.10.011. |
[36] | P. Fusar-Poli, A. Placentino, F. Carletti , et al., “Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies,” Journal of Psychiatry and Neuroscience, vol. 34, no. 6, pp. 418-432, Nov. 2009. |
[37] | L. Pessoa , “On the relationship between emotion and cognition,” Nature Reviews Neuroscience, vol. 9, no. 2, pp. 148-158, Feb. 2008. doi: 10.1038/nrn2317. |
[38] | D. A. Sauter, F. Eisner, A. J. Calder, S. K. Scott , “Perceptual cues in nonverbal vocal expressions of emotion,” Quarterly Journal of Experimental Psychology (Hove), vol. 63, no. 11, pp. 2251-2272, Nov. 2010. doi: 10.1080/17470211003721642. |
[39] | E. T. Rolls, J. O'Doherty, M. L. Kringelbach , et al., “Representations of pleasant and painful touch in the human orbitofrontal and cingulate cortices,” Cerebral Cortex, vol. 13, no. 3, pp. 308-317, Mar. 2003. |
[40] | C. McCabe, E. T. Rolls, A. Bilderbeck, F. McGlone , “Cognitive influences on the affective representation of touch and the sight of touch in the human brain,” Social Cognitive and Affective Neuroscience, vol. 3, no. 2, pp. 97-108, Jun. 2008. doi: 10.1093/scan/nsn005. |
[41] | S. K. Scott, A. W. Young, A. J. Calder , et al., “Impaired auditory recognition of fear and anger following bilateral amygdala lesions,” Nature, vol. 385, no. 6613, pp. 254-257, Jan. 1997. doi: 10.1038/385254a0. |
[42] | A. J. Calder, J. Keane, F. Manes, N. Antoun, A. W. Young , “Impaired recognition and experience of disgust following brain injury,” Nat Neurosci, vol.3, pp. 1077-1078, 2000. doi: 10.1038/80586. |
[43] | C. P. Said, J. V. Haxby, A. Todorov , “Brain systems for assessing the affective value of faces,” Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, vol. 366, no. 1572, pp. 1660-1670, Jun. 2011. doi: 10.1098/rstb.2010.0351. |
[44] | J. Driver and T. Noesselt , “ Multisensory interplay reveals crossmodal influences on ‘sensory-specific’brain regions, neural responses, and judgments,’ Neuron, vol. 57, no. 1, pp. 11-23, Jan. 2008. doi: 10.1016/j.neuron.2007.12.013. |
[45] | K. Vogeley and G. Bente , “‘Artificial humans’: psychology and neuroscience perspectives on embodiment and nonverbal communication,’ Neural Networks, vol. 23, no. 1, pp. 1077-1090, Oct.-Nov. 2010. doi: 10.1016/j.neunet.2010.06.003 (2010). |
[46] | U. Frith and C. D. Frith , “Development and neurophysiology of mentalizing,” Philosophical Transactions of the Royal Society B-Biological Sciences, vol. 358, no. 1431, pp. 459-473, Mar. 2003. doi: DOI 10.1098/rstb.2002.1218. |
[47] | C. P. Said, C. D. Moore, A. D. Engell, A. Todorov, J. V. Haxby , “Distributed representations of dynamic facial expressions in the superior temporal sulcus,” Journal of Vision, vol. 10, no. 5, p. 11, May 2010. doi: 10.1167/10.5.11. |
[48] | K. S. LaBar, M. J. Crupain, J. T. Voyvodic, and G. McCarthy , “Dynamic perception of facial affect and identity in the human brain,” Cerebral Cortex, vol. 13, no. 10, pp. 1023-1033, Oct. 2003. |
[49] | J. V. Haxby, E. A. Hoffman, M. I. Gobbini , “Human neural systems for face recognition and social communication,” Biological Psychiatry. vol. 51, no. 1, pp. 59-67, Jan. 2002. |
[50] | A. J. Calder and A. W. Young , “Understanding the recognition of facial identity and facial expression,” Nature Reviews. Neuroscience, vol. 6, no. 8, pp. 641-651, Aug. 2005. doi: 10.1038/nrn1724 (2005). |
[51] | P. Belin, R. J. Zatorre, P. Lafaille, P. Ahad, B. Pike , “Voice-selective areas in human auditory cortex,” Nature, vol. 403, pp. 309-312, Jan. 2000. doi: 10.1038/35002078. |
[52] | S. K. Scott, D. Sauter, C. McGettigan , “Brain mechanisms for processing perceived emotional vocalizations in humans,” Handbook of Mammalian Vocalization: An Integrative Neuroscience Approach, vol.19. pp. 187-197, 2010. doi: 10.1016/B978-0-12-374593-4.00019-X. |
[53] | W. Li , “Learning to smell danger: acquired associative representation of threat in the olfactory cortex,” Frontiers in Behavioral Neuroscience. vol. 8, pp. 98, 2014. doi: 10.3389/fnbeh.2014.00098. |
[54] | N. M. Weinberger , “Associative representational plasticity in the auditory cortex: a synthesis of two disciplines,” Learning and Memory, vol. 14, no. 1-2, pp. 1-16, Jan.-Feb. 2007. doi: 10.1101/lm.421807. |
[55] | A. Grosso, M. Cambiaghi, G. Concina, T. Sacco, B. Sacchetti , “Auditory cortex involvement in emotional learning and memory,” Neuroscience, vol. 299, pp. 45-55, Jul. 2015. doi: 10.1016/j.neuroscience.2015.04.068. |
[56] | R. Tirindelli, M. Dibattista, S. Pifferi, A. Menini , “From pheromones to behavior,” Physiological Reviews. vol. 89, no. 3, pp. 921-956, Jul. 2009. doi: 10.1152/physrev.00037.2008. |
[57] | K. Touhara and L. B. Vosshall , “Sensing odorants and pheromones with chemosensory receptors,” Annual Review of Physiology, vol.71, pp. 307-332, 2009. doi: 10.1146/annurev.physiol.010908.163209. |
[58] | L. B. Kats and L. M. Dill , “The scent of death: chemosensory assessment of predation risk by prey animals,” Ecoscience, vol. 5, no. 3, pp. 361-394, 1998. |
[59] | W. Turner , “The convolutions of the brain: a study in comparative anatomy,” Journal of Anatomy and Physiology, vol. 25, pp. 105-153, 1890. |
[60] | C. Bushdid, M. O. Magnasco, L. B. Vosshall, A. Keller , “Humans can discriminate more than 1 trillion olfactory stimuli,” Science, vol. 343, no. 6177, pp. 1370-1372, Mar. 2014. doi: 10.1126/science.1249168. |
[61] | M. Laska, A. Seibt, A. Weber , “‘Microsmatic’ primates revisited: olfactory sensitivity in the squirrel monkey,” Chemical Senses. vol. 25, no. 1, pp. 47-53, Feb. 2000. doi: 10.1093/chemse/25.1.47 . |
[62] | M. Laska, M. Fendt, A. Wieser , et al., “Detecting danger--or just another odorant? Olfactory sensitivity for the fox odor component 2,4,5-trimethylthiazoline in four species of mammals,” Physiology Behavior, vol. 84, no. 2, pp. 211-215, Feb. 2005. doi: 10.1016/j.physbeh.2004.11.006. |
[63] | J. P. McGann , “Poor human olfaction is a 19th-century myth,” Science, vol. 356, no. 6338, eaam7263, May 2017. doi: 10.1126/science.aam7263. |
[64] | S. S. Schiffman , “Physicochemical correlates of olfactory quality,” Science, vol. 185, no. 4146, pp. 112-117, 1974. doi: 10.1126/science.185.4146.112. |
[65] | Y. Yeshurun and N. Sobel , “An odor is not worth a thousand words: from multidimensional odors to unidimensional odor objects,” Annual Review of Psychology, vol. 61, no. 219-241, 2010. doi: 10.1146/annurev.psych.60.110707.163639. |
[66] | S. T. Carmichael, M. C. Clugnet, J. L. Price , “Central olfactory connections in the macaque monkey,” The Journal of Comparative Neurology, vol. 346, no. 3, pp. 403-434, Aug. 1994. doi: 10.1002/cne.903460306. |
[67] | J. A. Gottfried , “Central mechanisms of odour object perception,” Nature Reviews. Neuroscience, vol. 11, no. 9, pp. 628-641, Sept. 2010. doi: nrn2883 [pii] 10.1038/nrn2883. |
[68] | W. Li, I. Moallem, K. A. Paller, J. A. Gottfried , “Subliminal smells can guide social preferences,” Psychological Science, vol. 18, no. 12, pp. 1044-1049, 2007, doi: PSCI2023 [pii] 10.1111/j.1467-9280.2007.02023.x. |
[69] | E. C. Forscher and W. Li , “Hemispheric asymmetry and visuo-olfactory integration in perceiving subthreshold (micro) fearful expressions,” The Journal of Neuroscience, vol. 32, no. 6, pp. 2159-2165, 2012. doi: 10.1523/JNEUROSCI.5094-11.2012. |
[70] | K. T. Lubke and B. M. Pause , “Always follow your nose: the functional significance of social chemosignals in human reproduction and survival,” Hormones and Behavior, vol. 68C, pp. 134-144, Feb. 2015. doi: 10.1016/j.yhbeh.2014.10.001. |
[71] | S. Jacob, D. J. Hayreh, M. K. McClintock , “Context-dependent effects of steroid chemosignals on human physiology and mood,” Physiology & Behavior, vol. 74, no. 1-2, pp. 15-27, Sept. 2001. |
[72] | C. Ober , “Studies of HLA, fertility and mate choice in a human isolate,” Human Reproduction Update, vol. 5, no. 2, pp. 103-107, Mar.-Apr. 1999. |
[73] | R. H. Porter and J. D. Moore , “Human kin recognition by olfactory cues,” Physiology & Behavior, vol. 27, no. 3, pp. 493-495, Sept. 1981. doi: 10.1016/0031-9384(81)90337-1. |
[74] | J. N. Lundstrom, J. A. Boyle, R. J. Zatorre, M. Jones-Gotman , “The neuronal substrates of human olfactory based kin recognition,” Human Brain Mapping, vol. 30, no. 8, pp. 2571-2580, Aug. 2009. doi: 10.1002/hbm.20686. |
[75] | G. E. Weisfeld, T. Czilli, K. A. Phillips, J. A. Gall, and C. M. Lichtman , “Possible olfaction-based mechanisms in human kin recognition and inbreeding avoidance,” Journal of Experimental Child Psychology, vol. 85, no. 3, pp. 279-295, Jul. 2003. |
[76] | H. Arakawa, S. Cruz, T. Deak , “From models to mechanisms: odorant communication as a key determinant of social behavior in rodents during illness-associated states,” Neuroscience and Biobehavioral Reviews, vol. 35, no. 9, pp. 1916-1928, Oct. 2011. doi: 10.1016/j.neubiorev.2011.03.007. |
[77] | M. J. Olsson, J. N. Lundström, B. A. Kimball , et al., “The scent of disease: human body odor contains an early chemosensory cue of sickness,” Psychological Science, vol. 25, no. 3, pp. 817-823, Mar. 2014. doi: 10.1177/0956797613515681. |
[78] | L. R. Mujica-Parodi, H. H. Strey, B. Frederick , et al., “Chemosensory cues to conspecific emotional stress activate amygdala in humans,” PLoS One, vol. 4, article no. e6415, 2009. doi: 10.1371/journal.pone.0006415. |
[79] | R. Zernecke, T. Frank, K. Haegler , et al., “Correlation analyses of detection thresholds of four different odorants,” Rhinology, vol. 49, no. 3, pp. 331-336, Aug. 2011. doi: 10.4193/Rhino10.263. |
[80] | B. M. Pause , “Processing of body odor signals by the human brain,” Chemosensory Perception, vol. 5, no. 1, pp. 55-63, Mar. 2012. doi: 10.1007/s12078-011-9108-2. |
[81] | A. Prehn-Kristensen, C. Wiesner, T. O. Bergmann , et al., “Induction of empathy by the smell of anxiety,” PLoS One, vol. 4, article no. e5987, 2009. doi: 10.1371/journal.pone.0005987. |
[82] | A. R. Radulescu and L. R. Mujica-Parodi , “Human gender differences in the perception of conspecific alarm chemosensory cues,”. PLoS One, vol. 8, article no. e68485, 2013. doi: 10.1371/journal.pone.0068485. |
[83] | J. N. Lundstrom, J. A. Boyle, R. J. Zatorre, M. Jones-Gotman , “Functional neuronal processing of body odors differs from that of similar common odors,” Cerebral Cortex, vol. 18, no. 6, pp. 1466-1474, Jun. 2008. doi: 10.1093/cercor/bhm178. |
[84] | J. Driver and T. Noesselt , “Multisensory interplay reveals crossmodal influences on ‘sensory-specific’ brain regions, neural responses, and judgments,”. Neuron, vol. 57, no. 1, pp. 11-23, Jan. 2008. doi: 10.1016/j.neuron.2007.12.013. |
[85] | M. M. Mesulam , “From sensation to cognition,” Brain, vol. 121, no. 6, pp. 1013-1052, 1998. |
[86] | B. E. Stein and M. A. Meredith , “The Merging of the Senses. Cambridge, USA: The MIT Press, 1993. |
[87] | P. Maurage and S. Campanella , “Experimental and clinical usefulness of crossmodal paradigms in psychiatry: an illustration from emotional processing in alcohol-dependence,” Frontiers in Human Neuroscience, vol. 7, article no. 394, Jul. 2013. doi: 10.3389/fnhum.2013.00394. |
[88] | S. Campanella and P. Belin , “Integrating face and voice in person perception,” Trends in Cognitive Sciences, vol. 11, no. 12, pp. 535-543, Dec. 2007. doi: 10.1016/j.tics.2007.10.001. |
[89] | D. G. Amaral, J. L. Price, A. Pitkanen, S. T. Carmichael , “Anatomical organization of the primate amygdaloid complex,” in The Amygdala: Neurobiological Aspects of Emotion, Memory, and Mental Dysfunction. Newo York, USA: Wiley-Liss, 1992. |
[90] | T. Ethofer, S. Anders, M. Erb , et al., “Impact of voice on emotional judgment of faces: an event-related fMRI study,” Human Brain Mapping, vol. 27, no. 9, pp. 707-714, 2016. doi: 10.1002/hbm.20212. |
[91] | J. H. Kaas and C. E. Collins. , “The resurrection of multisensory cortex in primates: connections patterns that integrate modalities,” in The Handbook of Multisensory Processes, G. A. Calvert, C. Spence, and B. E. Stein Eds. Cambridge, USA: MIT Press, 2004, pp. 285-293. |
[92] | M. Mesulam , “Defining neurocognitive networks in the BOLD new world of computed connectivity,” Neuron, vol. 62, no. 1, pp. 1-3, Apr. 2009. doi: 10.1016/j.neuron.2009.04.001. |
[93] | M. T. Wallace, T. J. Jr. Perrault, W. D. Hairston, and B. E. Stein , “Visual experience is necessary for the development of multisensory integration,” The Journal of Neuroscience, vol. 24, no. 43, pp. 9580-9584, Oct. 2004. doi: 10.1523/JNEUROSCI.2535-04.2004. |
[94] | V. I. Muller, E. C. Cieslik, B. I. Turetsky, S. B. Eickhoff , “Crossmodal interactions in audiovisual emotion processing,” Neuroimage, vol. 60, no. 1, pp. 553-561, Mar. 2012. doi: 10.1016/j.neuroimage.2011.12.007. |
[95] | R. S. Herz , “The effect of verbal context on olfactory perception,” Journal of Experimental Psychology. General, vol. 132, no. 4, pp. 595-606, Dec. 2003. doi: 10.1037/0096-3445.132.4.595. |
[96] | M. L. Dematte, D. Sanabria, R. Sugarman, C. Spence , “Cross-modal interactions between olfaction and touch,” Chemical Senses, vol. 31, no. 4, pp. 291-300, May 2016. doi: 10.1093/chemse/bjj031. |
[97] | J. Djordjevic, M. Jones-Gotman, K. De Sousa, H. Chertkow , “Olfaction in patients with mild cognitive impairment and Alzheimer’s disease,” Neurobiology of Aging, vol. 29, no. 5, pp. 693-706, May 2008. doi: S0197-4580(06)00437-4 [pii]10.1016/j.neurobiolaging.2006.11.014. |
[98] | N. Mizutani, M. Okamoto, Y. Yamaguchi , et al., “Package images modulate flavor perception for orange juice,” Food Quality and Preference, vol. 21, no. 7, pp. 867-872, Oct. 2010. doi: 10.1016/j.foodqual.2010.05.010. |
[99] | W. Li, R. E. Zinbarg, K. A. Paller , “Trait anxiety modulates supraliminal and subliminal threat: brain potential evidence for early and late processing influences,” Cognitive Affective & Behavioral Neuroscience, vol. 7, no. 1, pp. 25-36, Mar. 2007. |
[100] | W. Zhou and D. Chen , “Fear-related chemosignals modulate recognition of fear in ambiguous facial expressions,” Psychological Science, vol. 20, no. 2, pp. 177-183, Feb. 2009. doi: 10.1111/j.1467-9280.2009.02263.x. |
[101] | J. M. Leppanen and J. K. Hietanen , “Affect and face perception: odors modulate the recognition advantage of happy faces,” Emotion, vol. 3, no. 4, pp. 315-326, Dec. 2003. doi: 10.1037/1528-3542.3.4.315. |
[102] | W. Zhou and D. Chen , “Encoding human sexual chemosensory cues in the orbitofrontal and fusiform cortices,” The Journal of Neuroscience, vol. 28, no. 53, pp. 14416-14421, Dec. 2008. doi: 10.1523/JNEUROSCI.3148-08.2008. |
[103] | J. Seubert, T. Kellermann, J. Loughhead , et al., “Processing of disgusted faces is facilitated by odor primes: a functional MRI study,” Neuroimage, vol. 53, no. 2, pp. 746-756, Nov. 2010. doi: 10.1016/j.neuroimage.2010.07.012. |
[104] | L. R. Novak, D. R. Gitelman, B. Schuyler, W. Li , “Olfactory-visual integration facilitates perception of subthreshold negative emotion,” Neuropsychologia, vol. 77, pp. 288-297, Oct. 2015. doi: 10.1016/j.neuropsychologia.2015.09.005. |
[105] | S. Werner and U. Noppeney , “Distinct functional contributions of primary sensory and association areas to audiovisual integration in object categorization,” Journal of Neuroscience, vol. 30, no. 7, pp. 2662-2675, Feb. 2010. doi: 10.1523/JNEUROSCI.5091-09.2010. |
[106] | J. E. LeDoux , “Emotion: clues from the brain,” Annual Review of Psychology, vol. 46, pp. 209-235, Feb. 1995. doi: / 10.1146/annurev.ps.46.020195.001233. |
[107] | R. Adolphs , “Recognizing emotion from facial expressions: psychological and neurological mechanisms,” Behavioral and Cognitive Neuroscience Reviews, vol. 1, no. 1, pp. 21-62, Mar. 2002. |
[108] | L. Pessoa and R. Adolphs , “Emotion processing and the amygdala: from a ‘low road’ to ‘many roads’ of evaluating biological significance,” Nature Review Neuroscience, vol. 11, no. 11, pp. 773-783, Nov. 2010. doi: 10.1038/nrn2920. |
[109] | A. T. Beck and D. A. Clark , “An information processing model of anxiety: automatic and strategic processes,” Behaviour Research and Therapy, vol. 35, no. 1, pp. 49-58, Jan. 1997. doi: 10.1016/S0005-7967(96)00069-1. |
[110] | A. T. Beck, G. Emery, R. Greenberg , Anxiety Disorders and Phobias: a Cognitive Perspective. New York, USA: Basic, 1985. |
[111] | A. Ohman , “Fear and anxiety as emotional phenomena: clinical phenomenology, evolutionary perspectives, and information-processing mechanisms,” in Handbook of Emotions, M. Lewis and J. M. Haviland Eds. New York, USA: Guilford Press, 1993, pp. 511-536. |
[112] | A. Ohman , “Fear and anxiety: evolutionary, cognitive, and clinical perspectives,” in Handbook of Emotions (2nd ed.), M. Lewis & J. M. Haviland-Jones, Eds. New York, USA: The Guilford Press, 2000, pp. 573-593. |
[113] | V. Miskovic and A. Keil , “Acquired fears reflected in cortical sensory processing: a review of electrophysiological studies of human classical conditioning,” Psychophysiology, vol. 49, no. 9, pp. 1230-1241, Sept. 2012. doi: 10.1111/j.1469-8986.2012.01398.x. |
[114] | J. K. Olofsson and J. Polich , “Affective visual event-related potentials: arousal, repetition, and time-on-task,” Biological Psychology, vol. 75, no. 1, pp. 101-108, Jan. 2007. doi: 10.1016/j.biopsycho.2006.12.006. |
[115] | E. C. Forscher, Y. Zheng, Z. Ke, J. Folstein, W. Li , “Decomposing fear perception: a combination of psychophysics and neurometric modeling of fear perception,” Neuropsychologia, vol. 91, pp. 254-261, Oct. 2016. doi: 10.1016 /j.neuropsychologia.2016.08.018. |
[116] | S. J. Thorpe , “The speed of categorization in the human visual system,” Neuron, vol. 62, no. 2, pp. 168-170, Apr. 2009. doi: 10.1016/j.neuron.2009.04.012. |
[117] | T. Brosch, G. Pourtois, D. Sander , “The perception and categorisation of emotional stimuli: a review,” Cognition Emotion, vol. 24, no. 3, pp. 377-400, 2010. doi: Pii 91254516110.1080/02699930902975754. |
[118] | A. W. Young, D. Rowland, A. J. Calder , et al., “Facial expression megamix: tests of dimensional and category accounts of emotion recognition,” Cognition, vol. 63, no. 3, pp. 271-313, Jun. 1997. |
[119] | W. W. Seeley, V. Menon, A. F. Schatzberg , et al., “Dissociable intrinsic connectivity networks for salience processing and executive control,” Journal of Neuroscience, vol. 27, no. 9, pp. 2349-2356, Feb. 2007. doi: 10.1523/JNEUROSCI.5587-06.2007. |
[120] | V. Menon and L. Q. Uddin , “Saliency, switching, attention and control: a network model of insula function,” Brain Structure and Function, vol. 214, no. 5-6, pp. 655-667, Jun. 2010. |
[121] | M. Corbetta and G. L. Shulman , “Control of goal-directed and stimulus-driven attention in the brain,” Nature Reviews Neuroscience, vol. 3, no. 3, pp. 201-215, Mar. 2002. |
[122] | R. J. McNally , “Automaticity and the anxiety disorders,” Behaviour Research and Therapy, vol. 33, no. 7, pp. 747-754, Sept. 1995. doi: 10.1016/0005-7967(95)00015-P. |
[1] | Christine Perey. Open Augmented Reality Standards: Current Activities in Standards-Development Organizations [J]. ZTE Communications, 2012, 10(3): 39-46. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||