ZTE Communications ›› 2023, Vol. 21 ›› Issue (2): 11-17.DOI: 10.12142/ZTECOM.202302003
• Special Topic • Previous Articles Next Articles
Received:
2023-03-14
Online:
2023-06-13
Published:
2023-06-13
About author:
DENG Letian (DENG Letian, ZHAO Yanru. Deep Learning-Based Semantic Feature Extraction: A Literature Review and Future Directions[J]. ZTE Communications, 2023, 21(2): 11-17.
1 |
LECUN Y, BENGIO Y, HINTON G. Deep learning [J]. Nature, 2015, 521(7553): 436–444. DOI: 10.1038/nature14539
DOI |
2 |
HAMET P, TREMBLAY J. Artificial intelligence in medicine [J]. Metabolism, 2017, 69: S36–S40. DOI: 10.1016/j.metabol.2017.01.011
DOI |
3 |
DICK S. Artificial intelligence [J]. Harvard data science review, 2019, 1(1):1–8. DOI: 10.1162/99608f92.92fe150c
DOI |
4 |
BAO J, BASU P, DEAN M K, et al. Towards a theory of semantic communication [C]//IEEE Network Science Workshop. IEEE, 2011: 110–117. DOI: 10.1109/nsw.2011.6004632
DOI |
5 |
LUO X W, CHEN H H, GUO Q. Semantic communications: overview, open issues, and future research directions [J]. IEEE wireless communications, 2022, 29(1): 210–219. DOI: 10.1109/MWC.101.2100269
DOI |
6 | QIN Z J, TAO X M, LU J H, et al. Semantic communications: principles and challenges [EB/OL]. (2021-12-30)[2023-03-01]. |
7 |
XIE H Q, QIN Z J, LI G Y, et al. Deep learning enabled semantic communication systems [J]. IEEE transactions on signal processing, 2021, 69: 2663–2675. DOI: 10.1109/TSP.2021.3071210
DOI |
8 |
YANG W T, DU H Y, LIEW Z, et al. Semantic communications for future Internet: fundamentals, applications, and challenges [J]. IEEE communications surveys & tutorials, 2022, 25: 213–250. DOI: 10.1109/COMST.2022.3223224
DOI |
9 |
CHOWDHARY K R. Natural language processing [M]//Fundamentals of artificial intelligence. New Delhi: Springer India, 2020: 603–649. DOI: 10.1007/978-81-322-3972-7_19
DOI |
10 |
NADKARNI P M, OHNO-MACHADO L, CHAPMAN W W. Natural language processing: an introduction [J]. Journal of the American medical informatics association, 2011, 18(5): 544–551. DOI: 10.1136/amiajnl-2011-000464
DOI |
11 |
HIRSCHBERG J, MANNING C D. Advances in natural language processing [J]. Science, 2015, 349(6245): 261–266. DOI: 10.1126/science.aaa8685
DOI |
12 | MANNING C D, SCHÜTZE H. Foundations of statistical natural language processing [M]. Cambridge: MIT Press, 1999 |
13 |
CHEN X J, JIA S B, XIANG Y. A review: knowledge reasoning over knowledge graph [J]. Expert systems with applications, 2020, 141: 112948. DOI: 10.1016/j.eswa.2019.112948
DOI |
14 |
CHEN Z, WANG Y H, ZHAO B, et al. Knowledge graph completion: a review [J]. IEEE access, 2020, 8: 192435–192456. DOI: 10.1109/ACCESS.2020.3030076
DOI |
15 |
ZOU X H. A survey on application of knowledge graph [J]. Journal of physics: conference series, 2020, 1487(1): 012016. DOI: 10.1088/1742-6596/1487/1/012016
DOI |
16 |
MEDHAT W, HASSAN A, KORASHY H. Sentiment analysis algorithms and applications: a survey [J]. Ain shams engineering journal, 2014, 5(4): 1093–1113. DOI: 10.1016/j.asej.2014.04.011
DOI |
17 |
ZHANG L, WANG S, LIU B. Deep learning for sentiment analysis: a survey [J]. Wiley interdisciplinary reviews: data mining and knowledge discovery, 2018, 8(4): e1253. DOI: 10.1002/widm.1253
DOI |
18 |
HUSSEIN D M E D M. A survey on sentiment analysis challenges [J]. Journal of king Saud university: engineering sciences, 2018, 30(4): 330–338. DOI: 10.1016/j.jksues.2016.04.002
DOI |
19 |
GRIFFITHS T L, STEYVERS M, TENENBAUM J B. Topics in semantic representation [J]. Psychological review, 2007, 114(2): 211–244. DOI: 10.1037/0033-295x.114.2.211
DOI |
20 |
VIGLIOCCO G, VINSON D P. Semantic representation [M]//The oxford handbook of psycholinguistics, GASKELL M G ed. Oxford: Oxford University Press, 2012: 195–216. DOI: 10.1093/oxfordhb/9780198568971.013.0012
DOI |
21 |
ABEND O, RAPPOPORT A. The state of the art in semantic representation [C]//55th Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics, 2017: 77–89. DOI: 10.18653/v1/p17-1008
DOI |
22 |
VIGLIOCCO G, METEYARD L, ANDREWS M, et al. Toward a theory of semantic representation [J]. Language and cognition, 2009, 1(2): 219–247. DOI: 10.1515/langcog.2009.011
DOI |
23 |
VOULODIMOS A, DOULAMIS N, DOULAMIS A, et al. Deep learning for computer vision: a brief review [J]. Computational intelligence and neuroscience, 2018: 1–13. DOI: 10.1155/2018/7068349
DOI |
24 |
WILEY V, LUCAS T. Computer vision and image processing: a paper review [J]. International journal of artificial intelligence research, 2018, 2(1): 22. DOI: 10.29099/ijair.v2i1.42
DOI |
25 |
PAK M, KIM S. A review of deep learning in image recognition [C]//4th International Conference on Computer Applications and Information Processing Technology (CAIPT). IEEE, 2018: 1–3. DOI: 10.1109/CAIPT.2017.8320684
DOI |
26 |
UCHIDA S. Image processing and recognition for biological images [J]. Development, growth & differentiation, 2013, 55(4): 523–549. DOI: 10.1111/dgd.12054
DOI |
27 |
LONG T, LIANG Z N, LIU Q H. Advanced technology of high-resolution radar: target detection, tracking, imaging, and recognition [J]. Science China information sciences, 2019, 62(4): 1–26. DOI: 10.1007/s11432-018-9811-0
DOI |
28 | THOMA M. A survey of semantic segmentation [EB/OL]. (2016-02-21)[2023-03-01]. |
29 |
HAO S J, ZHOU Y, GUO Y R. A brief survey on semantic segmentation with deep learning [J]. Neurocomputing, 2020, 406: 302–321. DOI: 10.1016/j.neucom.2019.11.118
DOI |
30 |
LATEEF F, RUICHEK Y. Survey on semantic segmentation using deep learning techniques [J]. Neurocomputing, 2019, 338: 321–348. DOI: 10.1016/j.neucom.2019.02.003
DOI |
31 |
LU D, WENG Q. A survey of image classification methods and techniques for improving classification performance [J]. International journal of remote sensing, 2007, 28(5): 823–870. DOI: 10.1080/01431160600746456
DOI |
32 |
NATH S S, MISHRA G, KAR J, et al. A survey of image classification methods and techniques [C]//International Conference on Control, Instrumentation, Communication and Computational Technologies (ICCICCT). IEEE, 2014: 554–557. DOI: 10.1109/ICCICCT.2014.6993023
DOI |
33 |
NAZ S, MAJEED H, IRSHAD H. Image segmentation using fuzzy clustering: a survey [C]//6th International Conference on Emerging Technologies (ICET). IEEE, 2010: 181–186. DOI: 10.1109/ICET.2010.5638492
DOI |
34 |
DHANACHANDRA N, CHANU Y J. A survey on image segmentation methods using clustering techniques [J]. European journal of engineering and technology research, 2017, 2(1): 15–20. DOI: 10.24018/ejeng.2017.2.1.237
DOI |
35 |
HE K, MAO B, ZHOU X Y, et al. Knowledge enhanced coreference resolution via gated attention [C]//IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2023: 2287–2293. DOI: 10.1109/BIBM55620.2022.9995551
DOI |
36 |
HE K, HUANG Y C, MAO R, et al. Virtual prompt pre-training for prototype-based few-shot relation extraction [J]. Expert systems with applications, 2023, 213: 118927. DOI: 10.1016/j.eswa.2022.118927
DOI |
37 |
HE K, WU J L, MA X Y, et al. Extracting kinship from obituary to enhance electronic health records for genetic research [C]//4th Social Media Mining for Health Applications (#SMM4H) Workshop & Shared Task. Association for Computational Linguistics, 2019: 1–10. DOI: 10.18653/v1/w19-3201
DOI |
38 |
WANG H N. Development of natural language processing technology [J]. ZTE technology journal, 2022, 28(2): 59–64. DOI: 10.12142/ZTETJ.202202009
DOI |
39 |
HE K, MAO R, GONG T L, et al. Meta-based self-training and re-weighting for aspect-based sentiment analysis [J]. IEEE transactions on affective computing, 2022, PP(99): 1–13. DOI: 10.1109/TAFFC.2022.3202831
DOI |
40 |
MAO R, LIU Q, HE K, et al. The biases of pre-trained language models: an empirical study on prompt-based sentiment analysis and emotion detection [J]. IEEE transactions on affective computing, 2022, early access: 1–11. DOI: 10.1109/TAFFC.2022.3204972
DOI |
41 |
HE K, YAO L X, ZHANG J W, et al. Construction of genealogical knowledge graphs from obituaries: multitask neural network extraction system [J]. Journal of medical Internet research, 2021, 23(8): e25670. DOI: 10.2196/25670
DOI |
42 | HUANG Y C, HE K, WANG Y G, et al. COPNER: contrastive learning with prompt guiding for few-shot named entity recognition [C]//29th International Conference on Computational Linguistics. International Committee on Computational Linguistics, 2022: 2515–2527 |
43 |
BAO H, HE K, YIN X M, et al. BERT-based meta-learning approach with looking back for sentiment analysis of literary book reviews [M]//Natural language processing and chinese computing. Cham: Springer International Publishing, 2021: 235–247. DOI: 10.1007/978-3-030-88483-3_18
DOI |
44 |
HE K, MAO R, GONG T L, et al. JCBIE: a joint continual learning neural network for biomedical information extraction [J]. BMC bioinformatics, 2022, 23(1): 549. DOI: 10.1186/s12859-022-05096-w
DOI |
45 |
MAO B, JIA C, HUANG Y C, et al. Uncertainty-guided mutual consistency training for semi-supervised biomedical relation extraction [C]//IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022: 2318–2325. DOI: 10.1109/bibm55620.2022.9995416
DOI |
46 |
LI Y F, MA X Y, ZHOU X Y, et al. Knowledge enhanced LSTM for coreference resolution on biomedical texts [J]. Bioinformatics, 2021, 7(17): 2699–2705. DOI: 10.1093/bioinformatics/btab15
DOI |
47 |
AMIGO J M, BABAMORADI H, ELCOROARISTIZABAL S. Hyperspectral image analysis: a tutorial [J]. Analytica chimica acta, 2015, 896: 34–51. DOI: 10.1016/j.aca.2015.09.030
DOI |
48 |
KHAN M J, KHAN H S, YOUSAF A, et al. Modern trends in hyperspectral image analysis: a review [J]. IEEE access, 2018, 6: 14118–14129. DOI: 10.1109/ACCESS.2018.2812999
DOI |
49 |
HENROT S, CHANUSSOT J, JUTTEN C. Dynamical spectral unmixing of multitemporal hyperspectral images [J]. IEEE transactions on image processing, 2016, 25(7): 3219–3232. DOI: 10.1109/TIP.2016.2562562
DOI |
50 |
XU X, SHI Z W. Multi-objective based spectral unmixing for hyperspectral images [J]. ISPRS journal of photogrammetry and remote sensing, 2017, 124: 54–69. DOI: 10.1016/j.isprsjprs.2016.12.010
DOI |
51 |
ZHANG X R, GAO Z Y, JIAO L C, et al. Multifeature hyperspectral image classification with local and nonlocal spatial information via Markov random field in semantic space [J]. IEEE transactions on geoscience and remote sensing, 2018, 56(3): 1409–1424. DOI: 10.1109/TGRS.2017.2762593
DOI |
52 |
ZHANG X R, GAO Z Y, AN J L, et al. Joint multi-feature hyperspectral image classification with spatial constraint in semantic manifold [C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS). IEEE, 2016: 481–484. DOI: 10.1109/IGARSS.2016.7729119
DOI |
53 |
ZHANG X R, SONG Q, GAO Z Y, et al. Spectral-spatial feature learning using cluster-based group sparse coding for hyperspectral image classification [J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2016, 9(9): 4142–4159. DOI: 10.1109/JSTARS.2016.2593907
DOI |
54 |
NING H Y, ZHANG X R, QUAN D, et al. AUD-net: a unified deep detector for multiple hyperspectral image anomaly detection via relation and few-shot learning [J]. IEEE transactions on neural networks and learning systems, 2022, 99: 1–15. DOI: 10.1109/TNNLS.2022.3213023
DOI |
55 |
WU J L, TANG K W, ZHANG H C, et al. Structured information extraction of pathology reports with attention-based graph convolutional network [C]//IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021: 2395–2402. DOI: 10.1109/BIBM49941.2020.9313347
DOI |
56 |
WU J L, ZHANG R N, GONG T L, et al. BioIE: biomedical information extraction with multi-head attention enhanced graph convolutional network [C]//IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022: 2080–2087. DOI: 10.1109/BIBM52615.2021.9669650
DOI |
57 |
HE K, HONG N, LAPALME-REMIS S, et al. Understanding the patient perspective of epilepsy treatment through text mining of online patient support groups [J]. Epilepsy & behavior, 2019, 94: 65–71. DOI: 10.1016/j.yebeh.2019.02.002
DOI |
58 |
LIU Y, WU J L, WEI Y H, et al. AEFNet: adaptive scale feature based on elastic-and-funnel neural network for healthcare representation [C]//IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022: 2043–2050. DOI: 10.1109/BIBM52615.2021.9669339
DOI |
59 |
LI C, XU X D, ZHOU G H, et al. Implementation of national health informatization in China: survey about the status quo [J]. JMIR medical informatics, 2019, 7(1): e12238. DOI: 10.2196/12238
DOI |
60 |
WU J L, DONG Y X, GAO Z Y, et al. Dual attention and patient similarity network for drug recommendation [J]. Bioinformatics, 2023, 39(1): btad003. DOI: 10.1093/bioinformatics/btad003
DOI |
61 |
WU J L, QIAN B Y, LI Y, et al. Leveraging multiple types of domain knowledge for safe and effective drug recommendation [C]//31st ACM International Conference on Information & Knowledge Management. ACM, 2022: 2169–2178. DOI: 10.1145/3511808.3557380
DOI |
62 |
WU J L, MAO A Y, BAO X R, et al. PIMIP: an open source platform for pathology information management and integration [C]//Proceedings of 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022: 2088–2095. DOI: 10.1109/BIBM52615.2021.9669424
DOI |
63 |
WU J L, ZHANG R N, GONG T L, et al. A precision diagnostic framework of renal cell carcinoma on whole-slide images using deep learning [C]//International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021: 2104–2111. DOI: 10.1109/BIBM52615.2021.9669870
DOI |
64 |
WU J L, ZHANG R N, GONG T L, et al. A personalized diagnostic generation framework based on multi-source heterogeneous data [C]//IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2022: 2096–2103. DOI: 10.1109/BIBM52615.2021.9669427
DOI |
65 |
MAO A Y, WU J L, BAO X, et al. A two-stage convolutional network for nucleus detection in histopathology image [C]//IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2021: 2051–2058, DOI: 10.1109/BIBM52615.2021.9669344
DOI |
66 |
GAO Z Y, HONG B Y, ZHANG X L, et al. Instance-based vision transformer for subtyping of papillary renal cell carcinoma in histopathological image [M]//Medical image computing and computer assisted intervention. Cham: Springer International Publishing, 2021: 299–308. DOI: 10.1007/978-3-030-87237-3_29
DOI |
67 |
GAO Z Y, MAO A Y, WU K F, et al. Childhood leukemia classification via information bottleneck enhanced hierarchical multi-instance learning [J]. IEEE transactions on medical imaging, 2023: early access. DOI: 10.1109/tmi.2023.3248559
DOI |
68 |
GAO Z Y, HONG B Y, LI Y, et al. A semi-supervised multi-task learning framework for cancer classification with weak annotation in whole-slide images [J]. Medical image analysis, 2023, 83: 102652. DOI: 10.1016/j.media.2022.102652
DOI |
69 |
GAO Z Y, JIA C, LI Y, et al. Unsupervised representation learning for tissue segmentation in histopathological images: from global to local contrast [J]. IEEE transactions on medical imaging, 2022, 41(12): 3611–3623. DOI: 10.1109/tmi.2022.3191398
DOI |
70 |
GAO Z Y, SHI J B, ZHANG X L, et al. Nuclei grading of clear cell renal cell carcinoma in histopathological image by composite high-resolution network [M]//Medical image computing and computer assisted intervention. Cham: Springer International Publishing, 2021: 132–142. DOI: 10.1007/978-3-030-87237-3_13
DOI |
71 |
WANG G C, ZHANG X R, PENG Z L, et al. MOL: towards accurate weakly supervised remote sensing object detection via multi-view noisy learning [J]. ISPRS journal of photogrammetry and remote sensing, 2023, 196: 457–470. DOI: 10.1016/j.isprsjprs.2023.01.011
DOI |
[1] | LIU Chenyao, GUO Jiejie, ZHANG Yimeng, XU Wenjun, LIU Yiming. SST-V: A Scalable Semantic Transmission Framework for Video [J]. ZTE Communications, 2023, 21(2): 70-79. |
[2] | FAN Guotian, WANG Zhibin. Intelligent Antenna Attitude Parameters Measurement Based on Deep Learning SSD Model [J]. ZTE Communications, 2022, 20(S1): 36-43. |
[3] | GAO Zhengguang, LI Lun, WU Hao, TU Xuezhen, HAN Bingtao. A Unified Deep Learning Method for CSI Feedback in Massive MIMO Systems [J]. ZTE Communications, 2022, 20(4): 110-115. |
[4] | ZHANG Jintao, HE Zhenqing, RUI Hua, XU Xiaojing. Spectrum Sensing for OFDMA Using Multicarrier Covariance Matrix Aware CNN [J]. ZTE Communications, 2022, 20(3): 61-69. |
[5] | HE Hongye, YANG Zhiguo, CHEN Xiangning. Payload Encoding Representation from Transformer for Encrypted Traffic Classification [J]. ZTE Communications, 2021, 19(4): 90-97. |
[6] | XUE Songyan, LI Ang, WANG Jinfei, YI Na, MA Yi, Rahim TAFAZOLLI, Terence DODGSON. To Learn or Not to Learn:Deep Learning Assisted Wireless Modem Design [J]. ZTE Communications, 2019, 17(4): 3-11. |
[7] | ZHENG Xiaoqing, LU Yaping, PENG Haoyuan, FENG Jiangtao, ZHOU Yi, JIANG Min, MA Li, ZHANG Ji, JI Jie. Detecting Abnormal Start-Ups, Unusual Resource Consumptions of the Smart Phone: A Deep Learning Approach [J]. ZTE Communications, 2019, 17(2): 38-43. |
[8] | ZHENG Xiaoqing, CHEN Jun, SHANG Guoqiang. Deep Neural Network-Based Chinese Semantic Role Labeling [J]. ZTE Communications, 2017, 15(S2): 58-64. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||