1 |
VENUGOPAL T, RADHIKA S. A survey on channel coding in wireless networks [C]//2020 International Conference on Communication and Signal Processing (ICCSP). IEEE, 2020: 0784–0789. DOI: 10.1109/ICCSP48568.2020.9182213
DOI
URL
|
2 |
KUDEKAR S, RICHARDSON T J, URBANKE R L. Threshold saturation via spatial coupling: Why convolutional LDPC ensembles perform so well over the BEC [J]. IEEE transactions on information theory, 2011, 57(2): 803–834. DOI: 10.1109/TIT.2010.2095072
DOI
URL
|
3 |
SCHLÜTER M, HASSAN N U, FETTWEIS G P. On the construction of protograph based SC-LDPC codes for windowed decoding [C]//IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2018: 1–6. DOI:10.1109/WCNC.2018.8377289
DOI
URL
|
4 |
MO S Y, CHEN L, COSTELLO D J, et al. Designing protograph-based quasi-cyclic spatially coupled LDPC codes with large girth [J]. IEEE transactions on communications, 2020, 68(9): 5326–5337. DOI: 10.1109/TCOMM.2020.3001029
DOI
URL
|
5 |
NASERI S, BANIHASHEMI A H. Spatially coupled LDPC codes with small constraint length and low error floor [J]. IEEE communications letters, 2020, 24(2): 254–258. DOI: 10.1109/LCOMM.2019.2955450
DOI
URL
|
6 |
LIU K K, EL-KHAMY M, LEE J. Finite-length algebraic spatially-coupled quasi-cyclic LDPC codes [J]. IEEE journal on selected areas in communications, 2016, 34(2): 329–344. DOI: 10.1109/JSAC.2015.2504273
DOI
URL
|
7 |
HOU W, LU S, CHENG J. Rate-compatible spatially coupled LDPC codes via repeat-accumulation extension [C]//The 8th International Symposium on Turbo Codes and Iterative Information Processing (ISTC). IEEE, 2014: 87–91. DOI: 10.1109/ISTC.2014.6955091
DOI
URL
|
8 |
ZHANG Y S, PENG K W, CHEN Z M, et al. Progressive matrix growth algorithm for constructing rate-compatible length-scalable raptor-like quasi-cyclic LDPC codes [J]. IEEE transactions on broadcasting, 2018, 64(4): 816–829. DOI: 10.1109/TBC.2017.2781137
DOI
URL
|
9 |
CHEN T Y, DIVSALAR D, WANG J D, et al. Protograph-based raptor-like LDPC codes for rate compatibility with short blocklengths [C]//IEEE Global Telecommunications Conference. IEEE, 2011: 1–6. DOI: 10.1109/GLOCOM.2011.6134051
DOI
URL
|
10 |
LI H A, BAI B M, MU X J, et al. Algebra-assisted construction of quasi-cyclic LDPC codes for 5G new radio [J]. IEEE access, 2018, 6: 50229–50244. DOI: 10.1109/ACCESS.2018.2868963
DOI
URL
|
11 |
CHEN T Y, VAKILINIA K, DIVSALAR D, et al. Protograph-based raptor-like LDPC codes [J]. IEEE transactions on communications, 2015, 63(5): 1522–1532. DOI: 10.1109/TCOMM.2015.2404842
DOI
URL
|
12 |
CHUNG S Y. On the construction of some capacity-approaching coding schemes [D]. Cambridge, USA: Massachusetts Institute of Technology, 2000
|
13 |
DIVSALAR D, DOLINAR S, JONES C R, et al. Capacity-approaching protograph codes [J]. IEEE journal on selected areas in communications, 2009, 27(6): 876–888. DOI: 10.1109/JSAC.2009.090806
DOI
URL
|
14 |
MA J Y, SI Z W, HE Z Q. An efficient structure for terminating spatially coupled LDPC codes [C]//IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP). IEEE, 2015: 968–971. DOI:10.1109/ChinaSIP.2015.7230548
DOI
URL
|
15 |
PAPALEO M, IYENGAR A R, SIEGEL P H, et al. Windowed erasure decoding of LDPC Convolutional Codes [C]//2010 IEEE Information Theory Workshop on Information Theory. IEEE, 2010: 1–5. DOI:10.1109/ITWKSPS.2010.5503166
DOI
URL
|