ZTE Communications ›› 2022, Vol. 20 ›› Issue (3): 27-34.DOI: 10.12142/ZTECOM.202203004
• Special Topic • Previous Articles Next Articles
LU Feng1, GU Lin1(), TIAN Xuehua1, SONG Cheng1, ZHOU Lun2
Received:
2022-08-18
Online:
2022-09-13
Published:
2022-09-14
About author:
LU Feng received her MS and PhD degrees in computer science from Huazhong University of Science and Technology, China in 1997 and 2006. She is currently an associate professor in School of Computer Science and Technology, Huazhong University of Science and Technology. Her current research interests include big data, artificial intelligence and distributed computing. She has authored two books and over 20 papers in refereed journals and conferences in these areas. She is a member of CCF and a senior member of the first Session of Chinese Hospital Association, Health Data Application and Management Committee. She was the recipient of three teaching achievement and curriculum development awards.|GU Lin (Supported by:
LU Feng, GU Lin, TIAN Xuehua, SONG Cheng, ZHOU Lun. Federated Learning Based on Extremely Sparse Series Clinic Monitoring Data[J]. ZTE Communications, 2022, 20(3): 27-34.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.202203004
Time/min | AUC | ACC | Pre. | Sens. | Spe. | F1 |
---|---|---|---|---|---|---|
15 | 0.502 | 0.990 | 0.044 | 0.013 | 0.998 | 0.020 |
10 | 0.512 | 0.991 | 0.085 | 0.026 | 0.998 | 0.040 |
5 | 0.506 | 0.993 | 0.229 | 0.013 | 0.999 | 0.025 |
Table 1 LSTM prediction results
Time/min | AUC | ACC | Pre. | Sens. | Spe. | F1 |
---|---|---|---|---|---|---|
15 | 0.502 | 0.990 | 0.044 | 0.013 | 0.998 | 0.020 |
10 | 0.512 | 0.991 | 0.085 | 0.026 | 0.998 | 0.040 |
5 | 0.506 | 0.993 | 0.229 | 0.013 | 0.999 | 0.025 |
AUC | ACC | Rec. | Pre. | Sens. | Spe. | F1 |
---|---|---|---|---|---|---|
0.628 | 0.822 | 0.267 | 0.878 | 0.989 | 0.267 | 0.409 |
Table 2 Prediction results of the proposed model
AUC | ACC | Rec. | Pre. | Sens. | Spe. | F1 |
---|---|---|---|---|---|---|
0.628 | 0.822 | 0.267 | 0.878 | 0.989 | 0.267 | 0.409 |
AUC | ACC | Rec. | Pre. | Sens. | Spe. | F1 | |
---|---|---|---|---|---|---|---|
Before Rebalancing | 0.501 | 0.768 | 0.003 | 0.333 | 0.998 | 0.003 | 0.005 |
After Rebalancing | 0.628 | 0.822 | 0.267 | 0.878 | 0.989 | 0.267 | 0.409 |
Table 3 Comparison of ablation experiments
AUC | ACC | Rec. | Pre. | Sens. | Spe. | F1 | |
---|---|---|---|---|---|---|---|
Before Rebalancing | 0.501 | 0.768 | 0.003 | 0.333 | 0.998 | 0.003 | 0.005 |
After Rebalancing | 0.628 | 0.822 | 0.267 | 0.878 | 0.989 | 0.267 | 0.409 |
1 |
DENNY J C, COLLINS F S. Precision medicine in 2030—seven ways to transform healthcare [J]. Cell, 2021, 184(6): 1415–1419. DOI: 10.1016/j.cell.2021.01.015
DOI |
2 |
RAGHUNATH S, ULLOA CERNA A E, JING L Y, et al. Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network [J]. Nature medicine, 2020, 26(6): 886–891. DOI: 10.1038/s41591-020-0870-z
DOI |
3 |
GAO Y, CAI G Y, FANG W, et al. Machine learning based early warning system enables accurate mortality risk prediction for COVID-19 [J]. Nature communications, 2020, 11: 5033. DOI: 10.1038/s41467-020-18684-2
DOI |
4 |
TOMAŠEV N, GLOROT X, RAE J W, et al. A clinically applicable approach to continuous prediction of future acute kidney injury [J]. Nature, 2019, 572(7767): 116–119. DOI: 10.1038/s41586-019-1390-1
DOI |
5 |
LIANG H Y, TSUI B Y, NI H, et al. Evaluation and accurate diagnoses of pediatric diseases using artificial intelligence [J]. Nature medicine, 2019, 25(3): 433–438. DOI: 10.1038/s41591-018-0335-9
DOI |
6 |
KOCH M. Artificial intelligence is becoming natural [J]. Cell, 2018, 173(3): 531–533. DOI: 10.1016/j.cell.2018.04.007
DOI |
7 | BACCHI S, TAN Y, OAKDEN‐RAYNER L, et al. Machine learning in the prediction of medical inpatient length of stay [J]. Internal medicine journal, 2022, 52(2): 176–185 |
8 | VAROQUAUX G, CHEPLYGINA V. Machine learning for medical imaging: methodological failures and recommendations for the future [J]. NPJ digital medicine, 2022, 5(1): 1–8 |
9 |
COUDRAY N, OCAMPO P S, SAKELLAROPOULOS T, et al. Classification and mutation prediction from non‐small cell lung cancer histopathology images using deep learning [J]. Nature medicine, 2018, 24(10): 1559–1567. DOI: 10.1038/s41591-018-0177-5
DOI |
10 |
YANG Q, LIU Y, CHENG Y, et al. Synthesis lectures on artificial intelligence and machine learning: federated learning [M]. Berlin Heidelberg, Germany: Springer, 2019: 1–207. DOI: 10.2200/s00960ed2v01y201910aim043
DOI |
11 |
KELLY C J, KARTHIKESALINGAM A, SULEYMAN M, et al. Key challenges for delivering clinical impact with artificial intelligence [J]. BMC medicine, 2019, 17(1): 195. DOI: 10.1186/s12916-019-1426-2
DOI |
12 |
LI R W, CHEN Y, RITCHIE M D, et al. Electronic health records and polygenic risk scores for predicting disease risk [J]. Nature reviews genetics, 2020, 21(8): 493–502. DOI: 10.1038/s41576-020-0224-1
DOI |
13 |
SHILO S, ROSSMAN H, SEGAL E. Axes of a revolution: challenges and promises of big data in healthcare [J]. Nature medicine, 2020, 26(1): 29–38. DOI: 10.1038/s41591-019-0727-5
DOI |
14 |
JOHNSON A, BULGARELLI L, POLLARD T, et al. MIMIC-IV-ED [DB]. PhysioNet, 2021. DOI: 10.13026/as7t-c445
DOI |
15 |
LI J, YAN X S, CHAUDHARY D, et al. Imputation of missing values for electronic health record laboratory data [J]. NPJ digital medicine, 2021, 4(1): 147. DOI: 10.1038/s41746-021-00518-0
DOI |
16 |
WU J R, VODOVOTZ Y, ABDELHAMID S, et al. Multi-omic analysis in injured humans: patterns align with outcomes and treatment responses [J]. Cell reports medicine, 2021, 2(12): 100478. DOI: 10.1016/j.xcrm.2021.100478
DOI |
17 |
WEERAKODY P B, WONG K W, WANG G J, et al. A review of irregular time series data handling with gated recurrent neural networks [J]. Neurocomputing, 2021, 441: 161–178. DOI: 10.1016/j.neucom.2021.02.046
DOI |
18 | KUMAR Y, SINGLA R. Federated learning systems for healthcare: perspective and recent progress [J]. Federated learning systems, 2021: 141–156 |
19 | VAID A, JALADANKI S K, XU J, et al. Federated learning of electronic health records improves mortality prediction in patients hospitalized with covid-19 [EB/OL]. (2020-08-11)[2021-11-21]. |
20 |
SATTLER F, WIEDEMANN S, MULLER K R, et al. Robust and communication-efficient federated learning from non-i.i.d. data [J]. IEEE transactions on neural networks and learning systems, 2020, 31(9): 3400–3413. DOI: 10.1109/TNNLS.2019.2944481
DOI |
21 | RAMASWAMY S, MATHEWS R, RAO K, et al. Federated learning for emoji prediction in a mobile keyboard [EB/OL]. (2019-06-11)[2021-11-21]. |
22 |
KANG J W, XIONG Z H, NIYATO D, et al. Reliable federated learning for mobile networks [J]. IEEE wireless communications, 2020, 27(2): 72–80. DOI: 10.1109/MWC.001.1900119
DOI |
23 |
WEI R M, WANG J Y, SU M M, et al. Missing value imputation approach for mass spectrometry-based metabolomics data [J]. Scientific reports, 2018, 8(1): 663. DOI: 10.1038/s41598-017-19120-0
DOI |
24 | LUNDBERG S, LEE S I. A unified approach to interpreting model predictions [EB/OL]. (2017-11-25)[2021-12-05]. |
25 |
ANNANE D, BELLISSANT E, CAVAILLON J M. Septic shock [J]. The lancet, 2005, 365(9453): 63–78. DOI: 10.1016/S0140-6736(04)17667-8
DOI |
26 |
ASTIZ M E, RACKOW E C. Septic shock [J]. The lancet, 1998, 351(9114): 1501–1505. DOI: 10.1016/S0140-6736(98)01134-9
DOI |
27 |
RIVERS E P, MCINTYRE L, MORRO D C, et al. Early and innovative interventions for severe sepsis and septic shock: taking advantage of a window of opportunity [J]. CMAJ, 2005, 173(9): 1054–1065. DOI: 10.1503/cmaj.050632
DOI |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||