ZTE Communications ›› 2020, Vol. 18 ›› Issue (3): 3-11.DOI: 10.12142/ZTECOM.202003002
• Special Topic • Previous Articles Next Articles
HE Yejun1(), JIANG Jiachun1, ZHANG Long1, LI Wenting1, WONG Sai-Wai1, DENG Wei2, CHI Baoyong2
Received:
2020-06-16
Online:
2020-09-25
Published:
2020-11-03
About author:
HE Yejun (Supported by:
HE Yejun, JIANG Jiachun, ZHANG Long, LI Wenting, WONG Sai-Wai, DENG Wei, CHI Baoyong. Leaky-Wave Antennas for 5G/B5G Mobile Communication Systems: A Survey[J]. ZTE Communications, 2020, 18(3): 3-11.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202003002
Antenna Type | Guided Wave Structure | Advantage | Operating Frequencies/GHz | Max Gain/dBi | Beam Squinting/° | |
---|---|---|---|---|---|---|
[30] | LWA loaded with metasurface | Coplanar waveguide | ? Simple structure | 9.5–10.45 | 5 | 12 |
[31] | LWA loaded with prism | Substrate integrated waveguide | ? Lightweight ? Easy to integrate with other circuits | 35–40 | 8.5 | 1 |
[32] | LWA loaded with prism | Groove gap waveguide | ? Low loss | 11.5–13 | 16.5 | 0.6 |
[34] | LWA loaded with prism and metasurface | Ridged gap waveguid | ? Custom beam direction ? Minituriazation | 9.3–11.3 (Radiating at an angle of 38.3°) | 15.7 | 1.5 |
9.5–11.3 (Radiating at an angle of -0.4°) | 15.2 | 1.2 | ||||
[35] | LWA loaded with prism | Groove gap waveguide | ? Low side lobe level ? High cost-efficiency ? Stable manufacturing process | 54.81–61.19 (Glide-symmetric) | 16.5 | 3.4 |
54.81–61.19 (Mirror-symmetric) | 17.5 | 1.8 | ||||
[36] | LWA loaded with prism | Groove gap waveguide | ? Low side lobe level ? Dual beam radiation | 54–66 (Asymmetric) | 17 | 1 |
54–66 (Symmetric) | 15 | 1 |
Table 1 Comparison of the broadband fixed beam LWAs
Antenna Type | Guided Wave Structure | Advantage | Operating Frequencies/GHz | Max Gain/dBi | Beam Squinting/° | |
---|---|---|---|---|---|---|
[30] | LWA loaded with metasurface | Coplanar waveguide | ? Simple structure | 9.5–10.45 | 5 | 12 |
[31] | LWA loaded with prism | Substrate integrated waveguide | ? Lightweight ? Easy to integrate with other circuits | 35–40 | 8.5 | 1 |
[32] | LWA loaded with prism | Groove gap waveguide | ? Low loss | 11.5–13 | 16.5 | 0.6 |
[34] | LWA loaded with prism and metasurface | Ridged gap waveguid | ? Custom beam direction ? Minituriazation | 9.3–11.3 (Radiating at an angle of 38.3°) | 15.7 | 1.5 |
9.5–11.3 (Radiating at an angle of -0.4°) | 15.2 | 1.2 | ||||
[35] | LWA loaded with prism | Groove gap waveguide | ? Low side lobe level ? High cost-efficiency ? Stable manufacturing process | 54.81–61.19 (Glide-symmetric) | 16.5 | 3.4 |
54.81–61.19 (Mirror-symmetric) | 17.5 | 1.8 | ||||
[36] | LWA loaded with prism | Groove gap waveguide | ? Low side lobe level ? Dual beam radiation | 54–66 (Asymmetric) | 17 | 1 |
54–66 (Symmetric) | 15 | 1 |
Figure 12 Composite right/left-hand (CRLH) leaky-wave antenna (LWA) configuration[40]: (a) top view of the patch layer; (b) bottom view of the ground layer; (c) bottom view of the biasing layer.
Antenna Type | Operating Principle | Operating Frequencies/GHz | Max Gain/dBi | Beam Scanning Range/deg | |
---|---|---|---|---|---|
[37] | CRLH | Manipulation on dispersion characteristic | 2.4 | 6.15 | 40 to -17 |
[38] | Corrugated microstrip line | Modulation on surface impedance | 5.5–5.8 | 8 | -16 to 27 (at 5.8 GHz) |
[39] | Corrugated SIW | Manipulation on dispersion characteristic | 4.5 | 7.5 | -40.66 to 31.32 |
[40] | Microstrip CRLH | Manipulation on dispersion characteristic | 5 | 5.7 | -37 to 32 |
5.25 | 6.4 | -15 to 34 | |||
[41] | Slotted SIW | Reconfiguration of period length | 5 | 11.8 | -60 to 65 |
Table 2 Comparison of the frequency?fixed beam?scanning LWAs
Antenna Type | Operating Principle | Operating Frequencies/GHz | Max Gain/dBi | Beam Scanning Range/deg | |
---|---|---|---|---|---|
[37] | CRLH | Manipulation on dispersion characteristic | 2.4 | 6.15 | 40 to -17 |
[38] | Corrugated microstrip line | Modulation on surface impedance | 5.5–5.8 | 8 | -16 to 27 (at 5.8 GHz) |
[39] | Corrugated SIW | Manipulation on dispersion characteristic | 4.5 | 7.5 | -40.66 to 31.32 |
[40] | Microstrip CRLH | Manipulation on dispersion characteristic | 5 | 5.7 | -37 to 32 |
5.25 | 6.4 | -15 to 34 | |||
[41] | Slotted SIW | Reconfiguration of period length | 5 | 11.8 | -60 to 65 |
1 |
REBEIZ G M, KIM S⁃Y, INAC O, et al. Millimeter⁃wave large⁃scale phased⁃arrays for 5G systems [C]//IEEE MTT⁃S International Microwave Symposium. Phoenix, USA: IEEE, 2015: 1–3. DOI: 10.1109/MWSYM.2015.7167090
DOI |
2 |
HONG W, BAEK K, KO S. Millimeter⁃wave 5G antennas for smartphones: overview and experimental demonstration [J]. IEEE transactions on antennas and propagation, 2017, 65(12): 6250–6261. DOI: 10.1109/TAP.2017.2740963
DOI |
3 |
MARZETTA T L. Noncooperative cellular wireless with unlimited numbers of base station antennas [J]. IEEE transactions on wireless communications, 2010, 9(11): 3590–3600. DOI: 10.1109/TWC.2010.092810.091092
DOI |
4 |
BOGALE T E, LE L B. Massive MIMO and mmwave for 5G wireless hetnet: potential benefits and challenges [J]. IEEE Vehicular technology magazine, 2016, 11(1): 64–75. DOI: 10.1109/MVT.2015.2496240
DOI |
5 |
HONG W, JIANG Z, YU C, et al. Multibeam antenna technologies for 5G wireless communications [J]. IEEE transactions on antennas and propagation, 2017, 65(12): 6231–6249. DOI: 10.1109/TAP.2017.2712819
DOI |
6 | JACKSON D R, OLINER A A. Leaky⁃wave antennas [M]//Balanis CA. Modern antenna handbook. New York, USA: Wiley, 2008 |
7 | HANSEN W W. Radiating electromagnetic waveguide: U.S. Patent No. 2,402,622 [P]. 1940 |
8 | HESSEL A. General characteristics of traveling⁃wave antennas: in antenna theory [M]. New York, USA: McGraw⁃Hill, 1969 |
9 | TAMIR T. Leaky⁃wave antennas: in antenna theory [M]. New York, USA: McGraw⁃Hill, 1969 |
10 | HINES J N, UPSON J R. A wide aperture tapered⁃depth scanning antenna [R]. Columbus, USA: OH, 1957 |
11 |
PAULOTTO S, BACCARELLI P, FREZZA F, et al. A novel technique for open⁃stopband suppression in 1⁃D periodic printed leaky⁃wave antennas [J]. IEEE transactions on antennas and propagation, 2009, 57(7): 1894–1906. DOI: 10.1109/TAP.2009.2019900
DOI |
12 |
LIU J, ZHOU W, LONG Y. A simple technique for open⁃stopband suppression in periodic leaky⁃wave antennas using two nonidentical elements per unit cell [J]. IEEE transactions on antennas and propagation, 2018, 66(6): 2741–2751. DOI: 10.1109/TAP.2018.2819701
DOI |
13 |
KARMOKAR D, GUO Y, QIN P, et al. Substrate integrated waveguide⁃based periodic backward⁃to⁃forward scanning leaky⁃wave antenna with low cross⁃polarization [J]. IEEE transactions on antennas and propagation, 2108, 66(8): 3846–3856. DOI: 10.1109/TAP.2018.2835502
DOI |
14 |
LYU Y, LIU X, WANG P, et al. Leaky⁃wave antennas based on non‐cutoff substrate integrated waveguide supporting beam scanning from backward to forward [J]. IEEE transactions on antennas and propagation, 2016, 64(6): 2155–2164. DOI: 10.1109/TAP.2016.2550054
DOI |
15 |
CHEN S, KARMOKAR D, LI Z, et al. Circular⁃polarized substrate⁃integrated⁃waveguide leaky⁃wave antenna with wide⁃angle and consistent⁃gain continuous beam scanning [J]. IEEE transactions on antennas and propagation, 2019, 67(7): 4418–4428. DOI: 10.1109/TAP.2019.2911398
DOI |
16 |
ZHOU W, LIU J, LONG Y. Applications of the open⁃stopband suppression in various periodic leaky⁃wave antennas with tapered half⁃wavelength line [J]. IEEE transactions on antennas and propagation, 2019, 67(11): 6811–6820. DOI: 10.1109/TAP.2019.2925192
DOI |
17 | OLINER A A, JOHNSON D R. Leaky⁃wave antennas [M]//Volakis J. Antenna engineering handbook. New York, USA: McGraw⁃Hill, 2007 |
18 |
MENZEL W. A new travelling⁃wave antenna in microstrip [C]//8th European Microwave Conference, Paris, France: IEEE, 1978. DOI: 10.1109/EUMA.1978.332503
DOI |
19 |
XIE D, ZHU L, ZHANG X. An EH0⁃mode microstrip leaky⁃wave antenna with periodical loading of shorting pins [J]. IEEE transactions on antennas and propagation, 2017, 65(7): 3419–3426. DOI: 10.1109/TAP.2017.2700882
DOI |
20 |
XIE D, ZHU L. Microstrip leaky⁃wave antennas with nonuniform periodical loading of shorting pins for enhanced frequency sensitivity [J]. IEEE transactions on antennas and propagation, 2018, 66(7): 3337–3345. DOI: 10.1109/TAP.2018.2829884
DOI |
21 |
LIU J, LI Y, LONG Y. Design of periodic shorting⁃vias for suppressing the fundamental mode in microstrip leaky⁃wave antennas [J]. IEEE transactions on antennas and propagation, 2015, 63(10): 4297–4304. DOI: 10.1109/TAP.2015.2459136
DOI |
22 |
LYU Y, MENG F, YANG G, et al. Periodic leaky⁃wave antenna based on complementary pair of radiation elements [J]. IEEE transactions on antennas and propagation, 2018, 66(9): 4503–4515. DOI: 10.1109/TAP.2018.2842304
DOI |
23 |
KARMOKAR D, ESSELLE K, BIRD T. Wideband microstrip leaky⁃wave antennas with two symmetrical side beams for simultaneous dual⁃beam scanning [J]. IEEE transactions on antennas and propagation, 2016, 64(4): 1262–1269. DOI: 10.1109/TAP.2016.2529646
DOI |
24 |
LIU J, JACKSON D, LONG Y. Substrate integrated waveguide (SIW) leaky⁃wave antenna with transverse slots [J]. IEEE transactions on antennas and propagation, 2012, 60(1): 20–29. DOI: 10.1109/TAP.2011.2167910
DOI |
25 |
XU F, WU K, ZHANG X. Periodic leaky⁃wave antenna for millimeter wave applications based on substrate integrated waveguide [J]. IEEE transactions on antennas and propagation, 2010, 58(2): 340–347. DOI: 10.1109/TAP.2009.2026593
DOI |
26 |
CHENG Y, HONG W, WU K, et al. Millimeter⁃wave substrate integrated waveguide long slot leaky⁃wave antennas and two⁃dimensional multibeam applications [J]. IEEE transactions on antennas and propagation, 2010, 59(1): 40–47. DOI: 10.1109/TAP.2010.2090471
DOI |
27 |
GENG Y, WANG J, LI Y, et al. High⁃efficiency leaky⁃wave antenna array with sidelobe suppression and multibeam generation [J]. IEEE antennas and wireless propagation letters, 2017, 16: 2787–2790. DOI: 10.1109/LAWP.2017.2746090
DOI |
28 |
DONG Y, ITOH T. Composite right/left⁃handed substrate integrated waveguide and half mode substrate integrated waveguide leaky⁃wave structures [J]. IEEE transactions on antennas and propagation, 2011, 59(3): 767–775. DOI: 10.1109/TAP.2010.2103025
DOI |
29 |
ZHOU W, LIU J, LONG Y. Investigation of shorting vias for suppressing the open stopband in an SIW periodic leaky⁃wave structure [J]. IEEE transactions on microwave theory and techniques, 2018, 66(6): 2936–2945. DOI: 10.1109/TMTT.2018.2818140
DOI |
30 |
MEHDIPOUR A, WONG J, ELEFTHERIADES G. Beam⁃squinting reduction of leaky⁃wave antennas using huygens metasurfaces [J]. IEEE transactions on antennas and propagation, 2015, 63(3): 978–992. DOI: 10.1109/TAP.2015.2389240
DOI |
31 |
WANG L, GÓMEZ⁃TORNERO J, QUEVEDO⁃TERUEL O. Substrate integrated waveguide leaky⁃wave antenna with wide bandwidth via prism coupling [J]. IEEE transactions on microwave theory and techniques, 2018, 66(6): 3110–3118. DOI: 10.1109/TMTT.2018.2818149
DOI |
32 |
WANG L, GÓMEZ⁃TORNERO J, RAJO⁃IGLESIAS E, et al. Low⁃dispersive leaky⁃wave antenna integrated in groove gap waveguide technology [J]. IEEE transactions on antennas and propagation, 2018, 66(11): 5727–5736. DOI: 10.1109/TAP.2018.2863115
DOI |
33 |
RAJO⁃IGLESIAS E, FERRANDO⁃ROCHER M, ZAMAN A. Gap waveguide technology for millimeter⁃wave antenna systems [J]. IEEE communications magazine, 2018, 56(7): 14–20. DOI: 10.1109/MCOM.2018.1700998
DOI |
34 |
CHEN J, YUAN W, ZHANG C, et al. Wideband leaky⁃wave antennas loaded with gradient metasurface for fixed⁃beam radiations with customized tilting angles [J]. IEEE transactions on antennas and propagation, 2020, 68(1): 161–170. DOI: 10.1109/TAP.2019.2940542
DOI |
35 |
CHEN Q, ZETTERSTROM O, PUCCI E, et al. Glide⁃symmetric holey leaky⁃wave antenna with low dispersion for 60 GHz point⁃to⁃point communications [J]. IEEE transactions on antennas and propagation, 2020, 68(3): 1925–1936. DOI: 10.1109/TAP.2019.2944535
DOI |
36 |
ZETTERSTROM O, PUCCI E, PADILLA P, et al. Low⁃dispersive leaky⁃wave antennas for mmwave point⁃to⁃point high⁃throughput communications [J]. IEEE transactions on antennas and propagation, 2019, 68(3): 1322–1331. DOI: 10.1109/TAP.2019.2943437
DOI |
37 |
FU J⁃H, LI A, CHEN W, et al. An electrically controlled CRLH⁃inspired circularly polarized leaky⁃wave antenna [J]. IEEE antennas and wireless propagation letters, 2017, 16: 760–763. DOI: 10.1109/LAWP.2016.2601960
DOI |
38 |
WANG M, MA H, ZHANG H, et al. Frequency⁃fixed beam⁃scanning leaky⁃wave antenna using electronically controllable corrugated microstrip line [J]. IEEE transactions on antennas and propagation, 2018, 66(9): 4449–4457. DOI: 10.1109/TAP.2018.2845452
DOI |
39 |
CHEN K, ZHANG Y, HE S, et al. An electronically controlled leaky⁃wave antenna based on corrugated SIW structure with fixed⁃frequency beam scanning [J]. IEEE antennas and wireless propagation letters, 2019, 18(3): 551–555. DOI: 10.1109/LAWP.2019.2896354
DOI |
40 |
CHEN S, KARMOKAR D, LI Z, et al. Continuous beam scanning at a fixed frequency with a composite right⁃/left⁃handed leaky⁃wave antenna operating over a wide frequency band [J]. IEEE transactions on antennas and propagation, 2019, 67(12): 7272–7284. DOI: 10.1109/TAP.2019.2935088
DOI |
41 |
LI Z, GUO Y, CHEN S, et al. A period⁃reconfigurable leaky⁃wave antenna with fixed⁃frequency and wide⁃angle beam scanning [J]. IEEE transactions on antennas and propagation, 2019, 67(6): 3720–3732. DOI: 10.1109/TAP.2019.2907636
DOI |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||