ZTE Communications ›› 2020, Vol. 18 ›› Issue (2): 57-73.DOI: 10.12142/ZTECOM.202002008
• Review • Previous Articles Next Articles
SUN Lin1, DU Jiangbing1(), HUA Feng2, TANG Ningfeng2, HE Zuyuan1
Received:
2019-03-04
Online:
2020-06-25
Published:
2020-08-07
About author:
SUN Lin received the bachelor’s degree in electronic engineering from Sichuan University, China in 2014 and has developed great interest in optical fiber communication field. He is currently working toward the Ph.D. degree at Shanghai Jiao Tong University, China. His research activities and interests include fiber communications, optical signal processing and optical transmission and interconnection.|DU Jiangbing (Supported by:
SUN Lin, DU Jiangbing, HUA Feng, TANG Ningfeng, HE Zuyuan. Adaptive and Intelligent Digital Signal Processing for Improved Optical Interconnection[J]. ZTE Communications, 2020, 18(2): 57-73.
Add to citation manager EndNote|Ris|BibTeX
URL: http://zte.magtechjournal.com/EN/10.12142/ZTECOM.202002008
Figure 2 Modulation nonlinearity caused by: (a) nonlinear LI curve of vertically cavity surface emitting laser VCSEL; (b) nonlinear spectra of Si-MRM as well as wavelength drift.
Figure 8 Experimental bit loading results for DMT and PS-DMT in the optical B2B case: (a) bit-loading results for conventional DMT, PS-DMT and PS-DMT (dyadic); (b) shaped probability distributions of two typical subcarriers (22th and 66th subcarriers) for PS-DMT.
Figure 9 Constellations of 12th and 66th subcarriers for optical B2B case (3.5 dBm received power) and after 100 m OM3 fiber transmission (3.3 dBm received power).
Figure 11 (a) The training model of SVM based on binary-tree structure; (b) a schematic diagram of the hyper plane generated by node SVM for the training processing of category 1.
Complexity | OvR | BE | CR | IQC |
---|---|---|---|---|
SVM number for training | 2 294 | 2 177 | 2 177 | 804 |
Support vector number (×105) | 11.61 | 1.367 | 1.376 | 1.997 |
Average SVM number for testing | 2 294 | 492 | 492 | 492 |
Table 1 Complexity comparison for different SVM-based decision schemes
Complexity | OvR | BE | CR | IQC |
---|---|---|---|---|
SVM number for training | 2 294 | 2 177 | 2 177 | 804 |
Support vector number (×105) | 11.61 | 1.367 | 1.376 | 1.997 |
Average SVM number for testing | 2 294 | 492 | 492 | 492 |
Figure 24 Experimental setup of optical carrier-less amplitude phase modulation (CAP) transmission system (left) and principle of K-nearest neighbour algorithm (right)
Figure 25 (a) Electrical spectrum of 32 Gbit/s carrier-less optical amplitude phase (CAP) modulation signal; (b) constellation of 32 Gbit/s CAP in optical B2B case; (c) constellation of 32 Gbit/s CAP after 10 km transmission.
Figure 28 Constellations of some typical subcarriers for multi-tone modulation (DMT) as well as SVM-based decision boundaries for (a) optical B2B case and (b) 100 m MMF transmission.
1 |
XU K, SUN L, XIE Y Q, et al. Transmission of IM/DD signals at 2 μm wavelength using PAM and CAP [J]. IEEE photonics Journal, 2016, 8(5): 1–7. DOI:10.1109/jphot.2016.2602080
DOI |
2 |
KANEDA N, LEE J, CHEN Y K. Nonlinear equalizer for 112⁃Gb/s SSB⁃PAM4 in 80⁃km dispersion uncompensated link [C]//Optical Fiber Communication Conference. Los Angeles, USA, 2017. DOI: 10.1364/ofc.2017.tu2d.5
DOI |
3 |
PANG X D, OZOLINS O, GAIARIN S, et al. Experimental study of 1.55⁃um EML⁃based optical IM/DD PAM⁃4/8 short reach systems [J]. IEEE photonics technology letters, 2017, 29(6): 523–526. DOI: 10.1109/lpt.2017.2662948
DOI |
4 |
WINZER P J, GNAUCK A H, DOERR C R, et al. Spectrally efficient long⁃haul optical networking using 112⁃Gb/s polarization⁃multiplexed 16⁃QAM [J]. Journal of lightwave technology, 2010, 28(4): 547⁃556. DOI:10.1109/jlt.2009.2031922
DOI |
5 |
KOIZUMI Y, TOYODA K, YOSHIDA M, et al. 1024 QAM (60 Gbit/s) Single⁃carrier coherent optical transmission over 150 km [J]. Optics express, 2012, 20(11): 12508–12514. DOI:10.1364/oe.20.012508
DOI |
6 |
SEIMETZ M, NOELLE M, PATZAK E. Optical systems with high⁃order DPSK and star QAM modulation based on interferometric direct detection [J]. Journal of lightwave technology, 2007, 25(6): 1515–1530. DOI:10.1109/jlt.2007.896810
DOI |
7 |
ARMSTRONG J, LOWERY A J. Power efficient optical OFDM [J]. Electronics letters, 2006, 42(6): 370–372. DOI:10.1049/el:20063636
DOI |
8 |
YI X W, SHIEH W, TANG Y. Phase estimation for coherent optical OFDM [J]. IEEE photonics technology letters, 2007, 19(12): 919–921. DOI:10.1109/lpt.2007.897572
DOI |
9 |
SHIEH W. PMD⁃Supported Coherent Optical OFDM Systems [J]. IEEE photonics technology letters, 2007, 19(3): 134–136. DOI: 10.1109/lpt.2006.889035
DOI |
10 |
LEE S C J, RANDEL S, BREYER F, et al. PAM⁃DMT for intensity⁃modulated and direct⁃detection optical communication systems [J]. IEEE photonics technology letters, 2009, 21(23): 1749–1751. DOI: 10.1109/lpt.2009.2032663
DOI |
11 |
TAKAHARA T, TANAKA T, NISHIHARA M, et al. Discrete multi⁃tone for 100 Gb/s optical access networks [C]//Optical Fiber Communication Conference. San Francisco, USA, 2014. DOI: 10.1364/OFC.2014.M2I.1
DOI |
12 |
ZHONG K P, ZHOU X, GUI T, et al. Experimental study of PAM⁃4, CAP⁃16, and DMT for 100 Gb/s short reach optical transmission systems [J]. Optics express, 2015, 23(2): 1176. DOI: 10.1364/oe.23.001176
DOI |
13 |
NADAL L, SVALUTO MOREOLO M, FABREGA J M, et al. DMT modulation with adaptive loading for high bit rate transmission over directly detected optical channels [J]. Journal of lightwave technology, 2014, 32(21): 4143–4153. DOI: 10.1109/jlt.2014.2347418
DOI |
14 |
SUN L, DU J B, HE Z Y. Multiband three⁃dimensional carrierless amplitude phase modulation for short reach optical communications [J]. Journal of lightwave technology, 2016, 34(13): 3103–3109. DOI: 10.1109/jlt.2016.2559783
DOI |
15 |
OLMEDO M I, ZUO T J, JENSEN J B, et al. Multiband carrierless amplitude phase modulation for high capacity optical data links [J]. Journal of lightwave technology, 2014, 32(4): 798–804. DOI: 10.1109/jlt.2013.2284926
DOI |
16 |
INGHAM J D, PENTY R V, WHITE I H, et al. 40 Gb/s carrierless amplitude and phase modulation for low⁃cost optical data communication links[C]//Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Los Angeles, USA, 2011. DOI: 10.1364/ofc.2011.othz3
DOI |
17 |
SUN L, DU J B, YOU Y, et al. 45⁃Gbit/s 3D⁃CAP transmission over a 16⁃GHz bandwidth SSMF link assisted by wiener filtering [J]. Optics communications, 2017, 389: 118–122. DOI: 10.1016/j.optcom.2016.11.055
DOI |
18 |
SZCZERBA K, WESTBERGH P, KAROUT J, et al. 4⁃PAM for high⁃speed short⁃range optical communications [J]. Journal of optical communications and networking, 2012, 4(11): 885–894. DOI: 10.1364/jocn.4.000885
DOI |
19 |
MENA P V, MORIKUNI J J, KANG S M, et al. A simple rate⁃equation⁃based thermal VCSEL model [J]. Journal of lightwave technology, 1999, 17(5): 865–872. DOI: 10.1109/50.762905
DOI |
20 |
WANG L, QIU Y, XIAO X, et al. 24⁃Gb/s PAM⁃4 over 150⁃km SSMF using a driverless silicon microring modulator [C]//Asia Communications and Photonics Conference. Shanghai, China, 2014. DOI: 10.1109/jssc.2006.884342
DOI |
21 |
BOGAERTS W, HEYN P D, VAERENBERGH T V, et al. Silicon microring resonators [J]. Laser & photonics reviews, 2012, 6(1): 47–73. DOI: 10.1002/lpor.201100017
DOI |
22 |
RUBSAMEN M, WINZER P J, ESSIAMBRE R J. MLSE receivers for narrow⁃band optical filtering [C]//Optical Fiber Communication Conference & the National Fiber Optic Engineers Conference. Anaheim, USA, 2006. DOI: 10.1109/OFC.2006.215452
DOI |
23 |
STOJANOVIC N, HUANG Y, HAUSKE F N, et al. MLSE⁃based nonlinearity mitigation for WDM 112 Gbit/s PDM⁃QPSK transmissions with digital coherent receiver [C]//Optical Fiber Communication Conference. Los Angeles, USA, 2011.DOI: 10.1364/OFC.2011.OWW6
DOI |
24 |
RYLYAKOV A V, SCHOW C L, KASH J A. New ultra⁃high sensitivityA, low⁃power optical receiver based on a decision⁃feedback equalizer [C]//Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, Los Angeles, USA, 2011. DOI: 10.1364/ofc.2011.othp3
DOI |
25 |
BULZACCHELLI J F, MEGHELLI M, RYLOV S V, et al. A 10⁃Gb/s 5⁃Tap DFE/4⁃Tap FFE transceiver in 90⁃nm CMOS technology [J]. IEEE journal of solid⁃state circuits, 2006, 41(12): 2885–2900. DOI: 10.1109/jssc.2006.884342
DOI |
26 |
ZHOU J, QIAO Y J, YU J J, et al. Interleaved single⁃carrier frequency⁃division multiplexing for optical interconnects [J]. Optics express, 2017, 25(9): 10586–10596. DOI: 10.1364/oe.25.010586
DOI |
27 |
MAN J W, CHEN W, SONG X L, et al. A Low⁃cost 100GE optical transceiver module for 2km SMF interconnect with PAM4 modulation[C]//Optical Fiber Communication Conference, San Francisco, USA, 2014. DOI:10.1364/ofc.2014.m2e.7
DOI |
28 |
KANAZAWA S, YAMAZAKI H, NAKANISHI Y, et al. Transmission of 214⁃Gbit/s 4⁃PAM signal using an ultra⁃broadband lumped⁃electrode EADFB laser module [C]//Optical Fiber Communication Conference, Anaheim, USA, 2016. DOI: 10.1364/OFC.2016.Th5B.3
DOI |
29 |
VERPLAETSE M, LIN R, JVAN KERREBROUCK, et al. Real⁃time 100 Gb/s transmission using three⁃level electrical duobinary modulation for short⁃reach optical interconnects [J]. Journal of lightwave technology, 2017, 35(7): 1313–1319. DOI: 10.1109/jlt.2016.2643778
DOI |
30 |
FEHENBERGER T, LAVERY D, MAHER R, et al. Sensitivity gains by mismatched probabilistic shaping for optical communication systems [J]. IEEE photonics technology letters, 2016, 28(7): 786–789. DOI: 10.1109/lpt.2015.2514078
DOI |
31 |
BEYGI L, AGRELL E, KAHN J M, et al. Rate⁃adaptive coded modulation for fiber⁃optic communications [J]. Journal of lightwave technology, 2014, 32(2): 333–343. DOI: 10.1109/jlt.2013.2285672
DOI |
32 | BUCHALI F, STEINER F, BÖCHERER G, et al. Rate adaptation and reach increase by probabilistically shaped 64⁃QAM: an experimental demonstration [J]. Journal of lightwave technology, 2016, 34(7): 1599–1609 |
33 |
YANKOV M P, ZIBAR D, LARSEN K J, et al. Constellation shaping for fiber⁃optic channels with QAM and high spectral efficiency [J]. IEEE photonics technology letters, 2014, 26(23): 2407–2410. DOI: 10.1109/lpt.2014.2358274
DOI |
34 | BÖCHERER G. Capacity⁃achieving probabilistic shaping for noisy and noiseless channels [EB/OL]. (2012) [2019]. |
⁃Achieving_Probabilistic_Shaping_for_Noisy_and_Noiseless_Channels | |
35 |
BÖCHERER G. On Joint design of probabilistic shaping and forward error correction for optical systems[C]//Optical Fiber Communication Conference, San Diego, USA, 2018. DOI:10.1364/ofc.2018.m4e.1
DOI |
36 |
PAN C P, KSCHISCHANG F R. Probabilistic 16⁃QAM shaping in WDM systems [J]. Journal of lightwave technology, 2016, 34(18): 4285–4292. DOI:10.1109/jlt.2016.2594296
DOI |
37 |
RENNER J, FEHENBERGER T, YANKOV M P, et al. Experimental comparison of probabilistic shaping methods for unrepeated fiber transmission [J]. Journal of lightwave technology, 2017, 35(22): 4871–4879. DOI:10.1109/jlt.2017.2752243
DOI |
38 |
SEMRAU D, XU T H, SHEVCHENKO N A, et al. Achievable information rates estimates in optically amplified transmission systems using nonlinearity compensation and probabilistic shaping [J]. Optics Letters, 2017, 42(1): 121–124. DOI: 10.1364/ol.42.000121
DOI |
39 |
FEHENBERGER T, BÖCHERER G, ALVARADO A, et al. LDPC coded modulation with probabilistic shaping for optical fiber systems [C]//Optical Fiber Communication Conference, Los Angeles, USA, 2015. DOI: 10.1364/ofc.2015.th2a.23
DOI |
40 |
ERIKSSON T A, CHAGNON M, BUCHALI F, et al. 56 Gbaud probabilistically shaped PAM8 for data center interconnects [C]//2017 European Conference on Optical Communication, Gothenburg, Sweden, 2017. DOI:10.1109/ecoc.2017.8346148
DOI |
41 |
CHEN X, CHO J, CHANDRASEKHAR S, et al. Single⁃wavelength, single⁃polarization, single⁃ photodiode Kramers⁃Kronig detection of 440⁃Gb/s entropy⁃loaded discrete multitone modulation transmitted over 100⁃km SSMF[C]//2017 IEEE Photonics Conference, Orlando, USA, 2017. DOI:10.1109/pc2.2017.8283402
DOI |
42 |
CHE D, SHIEH W. Approaching the capacity of colored⁃SNR optical channels by multicarrier entropy loading [J]. Journal of lightwave technology, 2018, 36(1): 68–78. DOI: 10.1109/jlt.2017.2778290
DOI |
43 |
XIE C H, CHEN Z X, FU S N, et al. Achievable information rate enhancement of visible light communication using probabilistically shaped OFDM modulation [J]. Optics express, 2018, 26(1): 367. DOI: 10.1364/oe.26.000367
DOI |
44 |
KHAN F N, ZHONG K P, AL⁃ARASHI W H, et al. Modulation format identification in coherent receivers using deep machine learning [J]. IEEE photonics technology letters, 2016, 28(17): 1886–1889. DOI: 10.1109/lpt.2016.2574800
DOI |
45 |
WANG D S, ZHANG M, LI Z, et al. Modulation format recognition and OSNR estimation using CNN⁃based deep learning [J]. IEEE photonics technology letters, 2017, 29(19): 1667–1670. DOI: 10.1109/lpt.2017.2742553
DOI |
46 |
THRANE J, WASS J, PIELS M, et al. Machine learning techniques for optical performance monitoring from directly detected PDM⁃QAM signals [J]. Journal of lightwave technology, 2017, 35(4): 868–875. DOI: 10.1109/jlt.2016.2590989
DOI |
47 |
ANDERSON T B, KOWALCZYK A, CLARKE K, et al. Multi impairment monitoring for optical networks [J]. Journal of lightwave technology, 2009, 27(16): 3729–3736. DOI: 10.1109/jlt.2009.2025052
DOI |
48 |
GIACOUMIDIS E, MHATLI S, NGUYEN T, et al. Kerr⁃induced nonlinearity reduction in coherent optical OFDM by low complexity support vector machine regression⁃based equalization [C]//Optical Fiber Communication Conference, Anaheim, USA, 2016. DOI: 10.1364/ofc.2016.th2a.49
DOI |
49 |
JARAJREH M A, GIACOUMIDIS E, ALDAYA I, et al. Artificial neural network nonlinear equalizer for coherent optical OFDM [J]. IEEE photonics technology letters, 2015, 27(4): 387–390. DOI: 10.1109/lpt.2014.2375960
DOI |
50 |
NGUYEN T, MHATLI S, GIACOUMIDIS E, et al. Fiber nonlinearity equalizer based on support vector classification for coherent optical OFDM [J]. IEEE photonics journal, 2016, 8(2): 1–9. DOI: 10.1109/jphot.2016.2528886
DOI |
51 |
CHEN G Y, SUN L, XU K, et al. Machine learning of SVM classification utilizing complete binary tree structure for PAM⁃4/8optical interconnection [C]// IEEE Optical Interconnects Conference (OI), Santa Fe, USA, 2017. DOI: 10.1109/oic.2017.7965524
DOI |
52 |
WANG D S, ZHANG M, FU M X, et al. Nonlinearity mitigation using a machine learning detector based on k⁃nearest neighbors [J]. IEEE photonics technology letters, 2016, 28(19): 2102–2105. DOI: 10.1109/lpt.2016.2555857
DOI |
53 |
CHEN G Y, DU J B, SUN L, et al. Nonlinear distortion mitigation by machine learning of SVM classification for PAM⁃4 and PAM⁃8 modulated optical interconnection [J]. Journal of lightwave technology, 2018, 36(3): 650–657. DOI:10.1109/jlt.2017.2763961
DOI |
54 |
CHEN G Y, DU J B, SUN L, et al. Machine learning adaptive receiver for PAM⁃4 modulated optical interconnection based on silicon microring modulator [J]. Journal of light wave technology, 2018, 36(18): 4106–4113. DOI:10.1109/jlt.2018.2861710
DOI |
55 |
SUN L, DU J B, HE Z Y. Machine learning for nonlinearity mitigation in CAP modulated optical interconnect system by using k⁃nearest neighbour algorithm [C]//Asia Communications and Photonics Conference 2016, Wuhan, China, 2016. DOI: 10.1364/acpc.2016.as1b.1
DOI |
[1] | LI Zhongya, CHEN Rui, HUANG Xingang, ZHANG Junwen, NIU Wenqing, LU Qiuyi, CHI Nan. SVM for Constellation Shaped 8QAM PON System [J]. ZTE Communications, 2022, 20(S1): 64-71. |
[2] | Jianjun Yu. Digital Signal Processing for Optical Access Networks [J]. ZTE Communications, 2014, 12(4): 40-48. |
[3] | Jianqiang Li, Ekawit Tipsuwannakul, Magnus Karlsson, and Peter A. Andrekson. Exploiting the Faster-Than-Nyquist Concept in Wavelength-Division Multiplexing Systems Using Duobinary Shaping [J]. ZTE Communications, 2012, 10(1): 23-29. |
[4] | Fan Zhang. Compensating for Nonlinear Effects in Coherent-Detection Optical Transmission Systems [J]. ZTE Communications, 2012, 10(1): 45-49. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||