ZTE Communications ›› 2019, Vol. 17 ›› Issue (2): 44-50.DOI: 10.12142/ZTECOM.201902007
• Review • Previous Articles Next Articles
CHENG Xiang1, DUAN Dongliang2, YANG Liuqing3, ZHENG Nanning4
Received:
2019-03-17
Online:
2019-06-11
Published:
2019-11-14
About author:
CHENG Xiang (Supported by:
CHENG Xiang, DUAN Dongliang, YANG Liuqing, ZHENG Nanning. Cooperative Intelligence for Autonomous Driving[J]. ZTE Communications, 2019, 17(2): 44-50.
Add to citation manager EndNote|Ris|BibTeX
URL: https://zte.magtechjournal.com/EN/10.12142/ZTECOM.201902007
[1] | MAURER M, GERDES J C, LENZ B ,et al. Autonomous Driving. Berlin, Heidelberg, Germany: Springer, 2016 |
[2] | YANG J, COUGHLIN J F . In-Vehicle Technology for Self-Driving Cars: Advantages and Challenges for Aging Drivers[J]. International Journal of Automotive Technology, 2014,15(2):333-340. DOI: 10.1007/s12239-014-0034-6 |
[3] | Bimbraw K. Autonomous Cars: Past, Present and Future a Review of the Developments in the Last Century, the Present Scenario and the Expected Future of Autonomous Vehicle Technology [C]//12th International Conference on in Informatics in Control, Automation and Robotics (ICINCO). Colmar, France, 2015: 191-198 |
[4] | GAIKWAD V, LOKHANDE S . Lane Departure Identification for Advanced Driver Assistance[J]. IEEE Transactions on Intelligent Transportation Systems, 2014: 1-9. DOI: 10.1109/tits.2014.2347400 |
[5] | LIANG Y, REYES M L, LEE J D . Real-Time Detection of Driver Cognitive Distraction Using Support Vector Machines[J]. IEEE Transactions on Intelligent Transportation Systems, 2007,8(2):340-350. DOI: 10.1109/TITS.2007.895298 |
[6] | CHENG S Y, TRIVEDI M M . Turn-Intent Analysis Using Body Pose for Intelligent Driver Assistance[J]. IEEE Pervasive Computing, 2006,5(4):28-37. DOI: 10.1109/MPRV.2006.88 |
[7] | OKUDA R, KAJIWARA Y, TERASHIMA K. A Survey of Technical Trend of ADAS and Autonomous Driving [C]//2014 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Taiwan, China, 2014: 1-4. DOI: 10.1109/VLSI-TSA.2014.6839646 |
[8] | LIN S-C, ZHANG Y, HSU C-H, et al. The Architectural Implications of Autonomous Driving: Constraints and Acceleration [C]//Twenty-Third International Conference on Architectural Support for Programming Languages and Operating Systems. Williamsburg, USA, 2018: 751-766. DOI: 10.1145/3173162.3173191 |
[9] | LIU S S, TANG J, ZHANG Z,et al. Computer Architectures for Autonomous Driving[J]. Computer, 2017,50(8):18-25. DOI: 10.1109/mc.2017.3001256 |
[10] | DAZIANO R A, SARRIAS M, LEARD B . Are Consumers Willing to Pay to Let Cars Drive for Them? Analyzing Response to Autonomous Vehicles[J]. Transportation Research Part C: Emerging Technologies, 2017,78:150-164. DOI: 10.1016/j.trc.2017.03.003 |
[11] | CHO H, SEO Y W,. KUMAR B V K V, et al . A Multi-Sensor Fusion System for Moving Object Detection and Tracking in Urban Driving Environments [C]//IEEE International Conference on Robotics and Automation (ICRA). Hong Kong, China, 2014: 1836-1843. DOI: 10.1109/ICRA.2014.6907100 |
[12] | PONZ A, RODRÍGUEZ-GARAVITO C H, GARCÍA F, et al. Laser Scanner and Camera Fusion for Automatic Obstacle Classification in ADAS Application [M] //PONZ A, RODRÍGUEZ-GARAVITO C H, GARCÍA F, et al. eds. Communications in Computer and Information Science. Cham, Switzerland: Springer International Publishing, 2015: 237-249. DOI: 10.1007/978-3-319-27753-0_13 |
[13] | ZIEBINSKI A, CUPEK R, ERDOGAN H , et al. A Survey of ADAS Technologies for the Future Perspective of Sensor Fusion [M] //ZIEBINSKI A, CUPEK R, ERDOGAN H, et al. eds. Computational Collective Intelligence. Cham, Switzerland: Springer International Publishing, 2016: 135-146. DOI: 10.1007/978-3-319-45246-3_13 |
[14] | ASVADI A, PREMEBIDA C, PEIXOTO P , et al. 3D Lidar-Based Static and Moving Obstacle Detection in Driving Environments: An Approach Based on Voxels and Multi-Region Ground Planes[J]. Robotics and Autonomous Systems, 83:299-311, 2016 |
[15] | DE SILVA V, ROCHE J, KONDOZ A. Fusion of LiDar and Camera Sensor Data for Environment Sensing in Driverless Vehicles [EB/OL]. (2018-03-29)[2019-03-01]. |
[16] | AUFRÈRE R, GOWDY J, MERTZ C, et al. Perception for Collision Avoidance and Autonomous Driving[J]. Mechatronics, 2003,13(10):1149-1161. DOI: 10.1016/s0957-4158(03)00047-3 |
[17] | SHIMONI M, TOLT G, PERNEEL C, et al. Detection of Vehicles in Shadow Areas Using Combined Hyperspectral and Lidar Data [C]//IEEE International Geoscience and Remote Sensing Symposium. Vancouver, Canada, 2011: 4427-4430. DOI: 10.1109/IGARSS.2011.6050214 |
[18] | CHAVEZ-GARCIA R O, AYCARD O . Multiple Sensor Fusion and Classification for Moving Object Detection and Tracking[J]. IEEE Transactions on Intelligent Transportation Systems, 2016,17(2):525-534. DOI: 10.1109/tits.2015. 2479925 |
[19] | GAO H B, CHENG B, WANG J Q ,et al. Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment[J]. IEEE Transactions on Industrial Informatics, 2018,14(9):4224-4231. DOI: 10.1109/tii.2018.2822828 |
[20] | ASVADI A, GARROTE L, PREMEBIDA C ,et al. Multimodal Vehicle Detection: Fusing 3D-LIDAR and Color Camera Data[J]. Pattern Recognition Letters, 2018,115:20-29. DOI: 10.1016/j.patrec.2017.09.038 |
[21] | SOU S I, TONGUZ O K . Enhancing VANET Connectivity through Roadside Units on Highways[J]. IEEE Transactions on Vehicular Technology, 2011,60(8):3586-3602. DOI: 10.1109/tvt.2011.2165739 |
[22] | BARRACHINA J, GARRIDO P, FOGUE M ,et al. Road Side Unit Deployment: A Density-Based Approach[J]. IEEE Intelligent Transportation Systems Magazine, 2013,5(3):30-39. DOI: 10.1109/mits.2013.2253159 |
[23] | REIS A B, SARGENTO S, NEVES F ,et al. Deploying Roadside Units in Sparse Vehicular Networks: What Really Works and What does not[J]. IEEE Transactions on Vehicular Technology, 2014,63(6):2794-2806. DOI: 10.1109/tvt.2013.2292519 |
[24] | MILANES V, VILLAGRA J, GODOY J ,et al. An Intelligent V2I-Based Traffic Management System[J]. IEEE Transactions on Intelligent Transportation Systems, 2012,13(1):49-58. DOI: 10.1109/tits.2011.2178839 |
[25] | WANG J, JIANG C, HAN Z . Internet of Vehicles: Sensing-Aided Transportation Information Collection and Diffusion[J]. IEEE Transactions on Vehicular Technology, 2018,67(5):3813-3825. DOI: 10.1109/tvt.2018.2796443 |
[26] | CHEN S Z, HU J L, SHI Y ,et al. Vehicle-To-Everything (v2x) Services Supported by LTE-Based Systems and 5G[J]. IEEE Communications Standards Magazine, 2017,1(2):70-76. DOI: 10.1109/mcomstd.2017.1700015 |
[27] | ZHANG R, CHENG X, YAO Q ,et al. Interference Graph-Based Resource-Sharing Schemes for Vehicular Networks[J]. IEEE Transactions on Vehicular Technology, 2013,62(8):4028-4039. DOI: 10.1109/TVT.2013.2245156 |
[28] | CHENG X, YANG L, SHEN X . D2D for Intelligent Transportation Systems: A Feasibility Study[J]. IEEE Transactions on Intelligent Transportation Systems, 2015,16(4):1784-1793. DOI: 10.1109/tits.2014.2377074 |
[29] | CHENG X, ZHANG R, YANG L. 5G-Enabled Vehicular Communications and Networking [M]. Cham, Switzerland: Springer International Publishing, 2018. |
[30] | CHENG X, CHEN C, ZHANG W X ,et al. 5G-Enabled Cooperative Intelligent Vehicular (5GenCIV) Framework: When Benz Meets Marconi[J]. IEEE Intelligent Systems, 2017,32(3):53-59. DOI: 10.1109/mis.2017.53 |
[31] | CHENG X, ZHANG R Q, YANG L Q . Wireless Toward the Era of Intelligent Vehicles[J]. IEEE Internet of Things Journal, 2019,6(1):188-202. DOI: 10.1109/jiot.2018.2884200 |
[32] | KIM J K, KIM J W, KIM J H, et al. Experimental Studies of Autonomous Driving of a Vehicle on the Road Using LiDAR and DGPS [C]//15th International Conference on Control, Automation and Systems (ICCAS). Busan, South Korea, 2015: 1366-1369. DOI: 10.1109/ICCAS.2015.7364852 |
[33] | JAIN A, SINGH A, KOPPULA H S, et al. Recurrent Neural Networks for Driver Activity Anticipation via Sensory-Fusion Architecture [C]//IEEE International Conference on Robotics and Automation (ICRA). Stockholm, Sweden, 2016: 3118-3125. DOI: 10.1109/ICRA.2016.7487478 |
[34] | XUE J R, WANG D, DU S Y ,et al. A Vision-Centered Multi-Sensor Fusing Approach to Self-Localization and Obstacle Perception for Robotic Cars[J]. Frontiers of Information Technology & Electronic Engineering, 2017,18(1):122-138. DOI: 10.1631/fitee.1601873 |
[35] | XIAO L, WANG R L, DAI B ,et al. Hybrid Conditional Random Field Based Camera-LIDAR Fusion for Road Detection[J]. Information Sciences, 2018,432:543-558. DOI: 10.1016/j.ins.2017.04.048 |
[36] | WANG C C, THORPE C, THRUN S ,et al. Simultaneous Localization, Mapping and Moving Object Tracking[J]. The International Journal of Robotics Research, 2007,26(9):889-916. DOI: 10.1177/0278364907081229 |
[37] | BOUZOURAA M E, HOFMANN U. Fusion of Occupancy Grid Mapping and Model Based Object Tracking for Driver Assistance Systems Using Laser and Radar Sensors [C]//IEEE Intelligent Vehicles Symposium, San Diego, USA, 2010: 294-300. DOI: 10.1109/IVS.2010.5548106 |
[38] | LI Y R, DUAN D L, CHEN C, et al. Occupancy Grid Map Formation and Fusion in Cooperative Autonomous Vehicle Sensing (Invited Paper) [C]//IEEE International Conference on Communication Systems (ICCS). Chengdu, China, 2018: 204-209. DOI: 10.1109/ICCS.2018.8689254 |
[39] | YANG P T, DUAN D L, CHEN C, et al. Optimal Multi-Sensor Multi-Vehicle (MSMV) Localization and Mobility Tracking [C]//IEEE Global Conference on Signal and Information Processing (GlobalSIP). Anaheim, USA, 2018: 1223-1227. DOI: 10.1109/GlobalSIP.2018.8646626 |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||