ZTE Communications ›› 2025, Vol. 23 ›› Issue (1): 107-114.DOI: 10.12142/ZTECOM.202501014
收稿日期:
2023-10-11
出版日期:
2025-03-25
发布日期:
2025-03-25
AN Hao1, LIU Ting1, HE Danping1(), MA Yihua2, DOU Jianwu2
Received:
2023-10-11
Online:
2025-03-25
Published:
2025-03-25
About author:
AN Hao received his BE degree in communication engineering from Beijing Information and Science Technology University, China in 2021. He is currently pursuing his PhD degree with the School of Electronic and Information Engineering, Beijing Jiaotong University, China. He received the Best Paper Award in ICEICT 2022. His current research interests include measurement and modeling of wireless propagation channels, UAV communications, and integrated sensing and communications.Supported by:
. [J]. ZTE Communications, 2025, 23(1): 107-114.
AN Hao, LIU Ting, HE Danping, MA Yihua, DOU Jianwu. Measurement and Analysis of Radar-Cross-Section of UAV at 21–26 GHz Frequency Band[J]. ZTE Communications, 2025, 23(1): 107-114.
Measurement Parameters | Values |
---|---|
Center frequency | 23.5 GHz |
Bandwidth | 5.0 GHz |
Frequency samples | 201.0 |
Rotation angle interval | 5.0° |
Tx and Rx heights from the ground | 1.3 m |
UAV height from the ground | 1.3 m |
Antenna gain | 24.7 dBi |
Angle between Tx and Rx | 10.0°/45.0° |
Table 1 Measurement configuration
Measurement Parameters | Values |
---|---|
Center frequency | 23.5 GHz |
Bandwidth | 5.0 GHz |
Frequency samples | 201.0 |
Rotation angle interval | 5.0° |
Tx and Rx heights from the ground | 1.3 m |
UAV height from the ground | 1.3 m |
Antenna gain | 24.7 dBi |
Angle between Tx and Rx | 10.0°/45.0° |
Case | UAV States | Propeller States to Aircraft Axis | Angle Between Tx and Rx |
---|---|---|---|
1 | Leveling | Parallel | 10° |
2 | Leveling | Vertical | |
3 | Tilting | Parallel | |
4 | Tilting | Vertical | |
5 | Leveling | Parallel | 45° |
6 | Leveling | Vertical | |
7 | Tilting | Parallel | |
8 | Tilting | Vertical |
Table 2 Measurement cases
Case | UAV States | Propeller States to Aircraft Axis | Angle Between Tx and Rx |
---|---|---|---|
1 | Leveling | Parallel | 10° |
2 | Leveling | Vertical | |
3 | Tilting | Parallel | |
4 | Tilting | Vertical | |
5 | Leveling | Parallel | 45° |
6 | Leveling | Vertical | |
7 | Tilting | Parallel | |
8 | Tilting | Vertical |
Case | RCS | ||
---|---|---|---|
Maximum Value/dBsm (Corresponding Angle) | Minimum Value/dBsm (Corresponding Angle) | Mean Value/ dBsm | |
1 | -19.01 (0°) | -38.81 (225°) | -31.68 |
2 | -19.40 (0°) | -36.53 (45°) | -31.63 |
3 | -25.12 (350°) | -40.87 (215°) | -33.27 |
4 | -24.72 (100°) | -39.50 (290°) | -32.85 |
5 | -20.78 (0°) | -40.33 (45°) | -32.09 |
6 | -21.78 (0°) | -36.95 (255°) | -32.36 |
7 | -24.71 (355°) | -42.93 (240°) | -34.02 |
8 | -24.59 (100°) | -47.95 (65°) | -34.63 |
Table 3 RCS measurement results
Case | RCS | ||
---|---|---|---|
Maximum Value/dBsm (Corresponding Angle) | Minimum Value/dBsm (Corresponding Angle) | Mean Value/ dBsm | |
1 | -19.01 (0°) | -38.81 (225°) | -31.68 |
2 | -19.40 (0°) | -36.53 (45°) | -31.63 |
3 | -25.12 (350°) | -40.87 (215°) | -33.27 |
4 | -24.72 (100°) | -39.50 (290°) | -32.85 |
5 | -20.78 (0°) | -40.33 (45°) | -32.09 |
6 | -21.78 (0°) | -36.95 (255°) | -32.36 |
7 | -24.71 (355°) | -42.93 (240°) | -34.02 |
8 | -24.59 (100°) | -47.95 (65°) | -34.63 |
1 | CHENG X, DUAN D L, GAO S J, et al. Integrated sensing and communications (ISAC) for vehicular communication networks (VCN) [J]. IEEE Internet of Things journal, 2022, 9( 23): 23441– 23451. DOI: 10.1109/JIOT.2022.3191386 |
2 | WANG C X, YOU X H, GAO X Q, et al. On the road to 6G: visions, requirements, key technologies, and testbeds [J]. IEEE communications surveys & tutorials, 2023, 25( 2): 905– 974. DOI: 10.1109/COMST.2023.3249835 |
3 | WU H C, LI H J, TAO X F. Green air-ground integrated heterogeneous network in 6G era [J]. ZTE communications, 2021, 19( 1): 39– 47. DOI: 10.12142/ZTECOM.202101006 |
4 | ALZAHRANI B, OUBBATI O S, BARNAWI A, et al. UAV assistance paradigm: state-of-the-art in applications and challenges [J]. Journal of network and computer applications, 2020, 166: 102706. DOI: 10.1016/j.jnca.2020.102706 |
5 | ZENG Y, ZHANG R, LIM T J. Wireless communications with unmanned aerial vehicles: opportunities and challenges [J]. IEEE communications magazine, 2016, 54( 5): 36– 42. DOI: 10.1109/MCOM.2016.7470933 |
6 | HE Y X, WANG D W, HUANG F H, et al. A V2I and V2V collaboration framework to support emergency communications in ABS-aided Internet of vehicles [J]. IEEE transactions on green communications and networking, 2023, 7( 4): 2038– 2051. DOI: 10.1109/TGCN.2023.3245098 |
7 | LIU T X, MIN S, LYU R L, et al. UAV assisted heterogeneous wireless networks: potentials and challenges [J]. ZTE communications, 2018, 16( 2): 3– 8. DOI: 10.3969/J.ISSN.1673-5188.2018.02.002 |
8 | WANG P F, SONG W, SUN G, et al. Air-ground integrated low-energy federated learning for secure 6G communications [J]. ZTE Communications, 2022, 20( 4): 32– 40. DOI: 10.12142/ZTECOM.202204005 |
9 | SHEN Y, OU P, CHEN F K, et al. Reconfigurable intelligent surface-assisted channel characteristics in 5G high-speed railway scenario [J]. Journal of Beijing Jiaotong University, 2023, 47( 2): 23– 35. DOI: 10.11860/j.issn.1673-0291.20220098 |
10 | XU S Y, LYU J S. Maximizing UAV coverage efficiency based on retransmission in the Internet of Things [J]. Journal of Beijing Jiaotong University, 2023, 47( 2): 58– 66. DOI: 10.11860/j.issn.1673-0291.20220133 |
11 | ALSAMHI S H, SHVETSOV A V, KUMAR S, et al. Computing in the sky: a survey on intelligent ubiquitous computing for UAV-assisted 6G networks and industry 4.0/5.0 [J]. Drones, 2022, 6( 7): 177. DOI: 10.3390/drones6070177 |
12 | CHENG X, HUANG Z W, BAI L. Channel nonstationarity and consistency for beyond 5G and 6G: a survey [J]. IEEE communications surveys & tutorials, 2022, 24( 3): 1634– 1669. DOI: 10.1109/COMST.2022.3184049 |
13 | AN H, GUAN K, LI W B, et al. Measurement and ray-tracing for UAV air-to-air channel modeling [C]// Proceedings of IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT). IEEE, 2022: 415– 420. DOI: 10.1109/ICEICT55736.2022.9908966 |
14 | WANG W J, SHI Y, MENG Z K, et al. A metasurface design method for dual wide band radar cross section reduction [J]. Chinese journal of radio science, 2021, 36( 6): 887– 895 |
15 | DE QUEVEDO Á D, URZAIZ F I, MENOYO J G, et al. Drone detection with X-band ubiquitous radar [C]// Proceedings of 19th International Radar Symposium (IRS). IEEE, 2018: 1– 10. DOI: 10.23919/IRS.2018.8447942 |
16 | SEDIVY P, NEMEC O. Drone RCS statistical behaviour [EB/OL]. ( 2021-11-07) [ 2023-04-16]. |
17 | GUAY R, DROLET G, BRAY R J. Measurement and modelling of the dynamic radar cross-section of an unmanned aerial vehicle [J]. IET radar, sonar & navigation, 2017, 11( 7): 1155– 1160 |
18 | EZUMA M, ANJINAPPA C K, SEMKIN V, et al. Comparative analysis of radar-cross-section- based UAV recognition techniques [J]. IEEE sensors journal, 2022, 22( 18): 17932– 17949. DOI: 10.1109/JSEN.2022.3194527 |
19 | EZUMA M, ANJINAPPA C K, FUNDERBURK M, et al. Radar cross section based statistical recognition of UAVs at microwave frequencies [J]. IEEE transactions on aerospace and electronic systems, 2021, 58( 1): 27– 46. DOI: 10.1109/TAES.2021.3096875 |
20 | SEMKIN V, YIN M S, HU Y Q, et al. Drone detection and classification based on radar cross section signatures [C]// International Symposium on Antennas and Propagation (ISAP). IEEE, 2021: 223– 224 |
21 | SEMKIN V, HAARLA J, PAIRON T, et al. Analyzing radar cross section signatures of diverse drone models at mmWave frequencies [J]. IEEE access, 2020, 8: 48958– 48969. DOI: 10.1109/ACCESS.2020.2979339 |
22 | LIAO N W, QIAN P Z, CHEN Y, et al. A joint planning method for the number of UAVs and spectrum resource in perceptual missions [J]. Chinese journal of radio science, 2023, 38( 5): 764– 772. DOI: 10.12265/j.cjors.2022212 |
23 | HE D P, AI B, GUAN K, et al. The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: a tutorial [J]. IEEE communications surveys & tutorials, 2018, 21( 1): 10– 27. DOI: 10.1109/COMST.2018.2865724 . |
24 | LIN Y C, ZHONG Z D, GUAN K, et al. Channel characteristic of millimeter wave massive MIMO under train-to-infrastructure scenario based on ray-tracing method [J]. Chinese journal of radio science, 2017, 32( 5): 595– 601. DOI: 10.13443/j.cjors.2017080902 |
25 | KNOTT E F, SCHAEFFER J F, TULLEY M T. Radar cross section [M]. Henderson, USA: SciTech Publishing, 2004 |
26 | HE D P, GUAN K, AI B, et al. Channel measurement and ray-tracing simulation for 77 GHz automotive radar [J]. IEEE transactions on intelligent transportation systems, 2022, 24( 7): 7746– 7756. DOI: 10.1109/TITS.2022.3208008 |
27 | HE D P, GUAN K, YAN D, et al. Physics and AI-based digital twin of multi-spectrum propagation characteristics for communication and sensing in 6G and beyond [J]. IEEE journal on selected areas in communications, 2023, 41( 11): 3461– 3473. DOI: 10.1109/JSAC.2023.3310108 |
No related articles found! |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 97
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 138
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||