1 |
MUKHERJEE N, CHAVAN S, COLGAN M, et al. Distributed architecture of Oracle database in-memory [J]. Proceedings of the VLDB endowment, 2015, 8(12): 1630–1641. DOI: 10.14778/2824032.2824061
|
2 |
BLAKELEY J A, CUNNINGHAM C, ELLIS N, et al. Distributed/heterogeneous query processing in Microsoft SQL server [C]//The 21st International Conference on Data Engineering (ICDE’05). IEEE, 2005: 1001–1012. DOI: 10.1109/ICDE.2005.51
|
3 |
YANG Z K, YANG C H, HAN F S, et al. OceanBase [J]. Proceedings of the VLDB endowment, 2022, 15(12): 3385–3397. DOI: 10.14778/3554821.3554830
|
4 |
CHANG L, WANG Z W, MA T, et al. HAWQ: a massively parallel processing SQL engine in hadoop [C]//The 2014 ACM SIGMOD International Conference on Management of Data. ACM, 2014: 1223–1234. DOI: 10.1145/2588555.2595636
|
5 |
IBARAKI T, KAMEDA T. On the optimal nesting order for computing N-relational joins [J]. ACM transactions on database systems, 9(3): 482–502. DOI: 10.1145/1270.1498
|
6 |
RUPPRECHT L, CULHANE W, PIETZUCH P. SquirrelJoin: network-aware distributed join processing with lazy partitioning [J]. Proceedings of the VLDB endowment, 2017, 10(11): 1250–1261. DOI: 10.14778/3137628.3137636
|
7 |
WANG G P. The optimization of query processing in Oceanbase 4.0. [EB/OL]. (2022-11-23) [2023-08-01].
|
8 |
MARCUS R, NEGI P, MAO H Z, et al. Neo: a learned query optimizer [J]. Proceedings of the VLDB endowment, 2019, 12(11): 1705–1718. DOI: 10.14778/3342263.3342644
|
9 |
YU X, LI G L, CHAI C L, et al. Reinforcement learning with tree-LSTM for join order selection [C]//The 36th International Conference on Data Engineering (ICDE). IEEE, 2020: 1297–1308. DOI: 10.1109/ICDE48307.2020.00116
|
10 |
MARCUS R, NEGI P, MAO H Z, et al. BAO: making learned query optimization practical [C]//The 2021 International Conference on Management of Data. ACM, 2021: 1275–1288. DOI: 10.1145/3448016.3452838
|
11 |
NEGI P, INTERLANDI M, MARCUS R, et al. Steering query optimizers: a practical take on big data workloads [C]//The 2021 International Conference on Management of Data. ACM, 2021: 2557–2569. DOI: 10.1145/3448016.3457568
|
12 |
YANG Z H, CHIANG W L, LUAN S F, et al. Balsa: learning a query optimizer without expert demonstrations [C]//The 2022 International Conference on Management of Data. ACM, 2022: 931–944. DOI: 10.1145/3514221.3517885
|
13 |
CHEN T Y, GAO J, CHEN H D, et al. LOGER: a learned optimizer towards generating efficient and robust query execution plans [J]. Proceedings of the VLDB endowment, 2023, 16(7): 1777–1789. DOI: 10.14778/3587136.3587150
|
14 |
DOSHI L, ZHUANG V, JAIN G, et al. Kepler: robust learning for faster parametric query optimization [EB/OL]. [2023-08-01].
|
15 |
WANG W, ZHANG M H, CHEN G, et al. Database meets deep learning [J]. ACM SIGMOD record, 2016, 45(2): 17–22. DOI: 10.1145/3003665.3003669
|
16 |
ZHOU X H, CHAI C L, LI G L, et al. Database meets artificial intelligence: a survey [J]. IEEE transactions on knowledge and data engineering, 2022, 34(3): 1096–1116. DOI: 10.1109/TKDE.2020.2994641
|
17 |
LAN H, BAO Z F, PENG Y W. A survey on advancing the DBMS query optimizer: cardinality estimation, cost model, and plan enumeration [J]. Data science and engineering, 2021, 6(1): 86–101. DOI: 10.1007/s41019-020-00149-7
|
18 |
CAI Q P, CUI C, XIONG Y Y, et al. A survey on deep reinforcement learning for data processing and analytics [J]. IEEE transactions on knowledge and data engineering, 2023, 35(5): 4446–4465. DOI: 10.1109/TKDE.2022.3155196
|
19 |
ZHAO X Y, ZHOU X H, LI G L. Automatic database knob tuning: a survey [J]. IEEE transactions on knowledge and data engineering, 2023, 35(12): 12470–12490. DOI: 10.1109/TKDE.2023.3266893
|
20 |
GUO C X, CHEN H, ZHANG F, et al. Distributed join algorithms on multi-CPU clusters with GPUDirect RDMA [C]//The 48th International Conference on Parallel Processing. ACM, 2019: 1–10. DOI: 10.1145/3337821.3337862
|
21 |
GAO H, SAKHARNYKH N. Scaling joins to a thousand GPUs. [EB/OL]. [2023-08-01].
|
22 |
PAUL J, LU S L, HE B S, et al. MG-join: a scalable join for massively parallel multi-GPU architectures [C]//International Conference on Management of Data. ACM, 2021: 1413–1425. DOI: 10.1145/3448016.3457254
|
23 |
YANG Z H, LIANG E, KAMSETTY A, et al. Deep unsupervised cardinality estimation [EB/OL]. (2019-11-21) [2023-08-01].
|
24 |
HILPRECHT B, SCHMIDT A, KULESSA M, et al. DeepDB: learn from data, not from queries! [EB/OL]. (2019-09-02) [2023-08-01].
|
25 |
WANG J Y, CHAI C L, LIU J B, et al. FACE [J]. Proceedings of the VLDB endowment, 2021, 15(1): 72–84. DOI: 10.14778/3485450.3485458
|
26 |
DUTT A, WANG C, NAZI A, et al. Selectivity estimation for range predicates using lightweight models [J]. Proceedings of the VLDB endowment, 2019, 12(9): 1044–1057. DOI: 10.14778/3329772.3329780
|
27 |
LI B B, LU Y, KANDULA S. Warper: efficiently adapting learned cardinality estimators to data and workload drifts [C]//International Conference on Management of Data. ACM, 2022: 1920–1933. DOI: 10.1145/3514221.3526179
|
28 |
NEGI P, WU Z N, KIPF A, et al. Robust query driven cardinality estimation under changing workloads [J]. Proceedings of the VLDB endowment, 2023, 16(6): 1520–1533. DOI: 10.14778/3583140.3583164
|
29 |
KANDULA S, ORR L, CHAUDHURI S. Pushing data-induced predicates through joins in big-data clusters [J]. Proceedings of the VLDB endowment, 2019, 13(3): 252–265. DOI: 10.14778/3368289.3368292
|
30 |
ZHAO Y, CONG G, SHI J C, et al. QueryFormer [J]. Proceedings of the VLDB endowment, 2022, 15(8): 1658–1670. DOI: 10.14778/3529337.3529349
|
31 |
ZHANG H, YU J X, ZHANG Y K, et al. Parallel query processing: To separate communication from computation [C]//International Conference on Management of Data. ACM, 2022: 1447–1461. DOI: 10.1145/3514221.3526164
|
32 |
POLYCHRONIOU O, SEN R, ROSS K A. Track join: distributed joins with minimal network traffic [C]//SIGMOD International Conference on Management of Data. ACM, 2014: 1483–1494
|
33 |
STAMOS J W, YOUNG H C. A symmetric fragment and replicate algorithm for distributed joins [J]. IEEE transactions on parallel and distributed systems, 1993, 4(12): 1345–1354. DOI: 10.1109/71.250116
|
34 |
YANG Y, YOUILL M, WOICIK M, et al. FlexPushdownDB: hybrid pushdown and caching in a cloud DBMS [J]. Proceedings of the VLDB Endowment, 2021, 14(11): 2101–2113
|
35 |
ROY D, PANDA P, ROY K. Tree-CNN: a hierarchical deep convolutional neural network for incremental learning [EB/OL]. (2019-09-18) [2023-08-01].
|
36 |
TAI K S, SOCHER R, MANNING C D. Improved semantic representations from tree-structured long short-term memory networks [EB/OL]. (2015-05-30) [2023-08-01].
|
37 |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need [C]//The 31st International Conference on Neural Information Processing Systems. ACM, 2017: 6000–6010. DOI: 10.5555/3295222.3295349
|
38 |
YANG Z K, YANG C H, HAN F S, et al. OceanBase: a 707 million tpmC distributed relational database system [J]. Proceedings of the VLDB endowment, 2022, 15(12): 3385–3397. DOI: 10.14778/3554821.3554830
|
39 |
SIDDIQUI T, JINDAL A, QIAO S, et al. Cost models for big data query processing: Learning, retrofitting, and our findings [EB/OL]. (2020-02-07) [2023-08-01].
|
40 |
MARCUS R, PAPAEMMANOUIL O. Plan-structured deep neural network models for query performance prediction [EB/OL]. (2019-01-31) [2023-08-01].
|
41 |
WANG J C, DING D, WANG H, et al. Polyjuice: high-performance transactions via learned concurrency control [EB/OL]. (2021-06-15) [2023-08-01].
|