1 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL]. (2016-02-17) [2024-04-16].
|
2 |
ZHAO Y, LI M, LAI L Z, et al. Federated learning with non-IID data [EB/OL]. (2018-06-02) [2024-04-16].
|
3 |
MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: The communication perspective [J]. IEEE communications surveys & tutorials, 2017, 19(4): 2322–2358. DOI: 10.1109/COMST.2017.2745201
|
4 |
KREUTZ D, RAMOS F M V, ESTEVES VERISSIMO P, et al. Software-defined networking: A comprehensive survey [J]. Proceedings of the IEEE, 2015, 103(1): 14–76. DOI: 10.1109/jproc.2014.2371999
|
5 |
LIU L M, ZHANG J, SONG S H, et al. Client-edge-cloud hierarchical federated learning [C]//IEEE International Conference on Communications (ICC). IEEE, 2020: 1–6. DOI: 10.1109/ICC40277.2020.9148862
|
6 |
ABAD M S H, OZFATURA E, GUNDUZ D, et al. Hierarchical federated learning ACROSS heterogeneous cellular networks [C]//Proceedings of ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 8866–8870. DOI: 10.1109/ICASSP40776.2020.9054634
|
7 |
LIU L M, ZHANG J, SONG S H, et al. Hierarchical federated learning with quantization: Convergence analysis and system design [EB/OL]. (2021-03-26) [2024-04-16].
|
8 |
LIU C, CHUA T J, ZHAO J. Time minimization in hierarchical federated learning [EB/OL]. (2022-10-07) [2024-04-16].
|
9 |
LIU X F, WANG Q, SHAO Y F, et al. Sparse federated learning with hierarchical personalized models [EB/OL]. (2023-09-25) [2024-04-16].
|
10 |
NGUYEN M D, PHAM Q V, HOANG D T, et al. Label driven Knowledge Distillation for Federated Learning with non-IID Data [EB/OL]. (2022-09-30) [2024-04-16].
|
11 |
Wang X, Wang Y J. Asynchronous Hierarchical Federated Learning [EB/OL]. (2022-05-31) [2024-04-16].
|
12 |
WANG J Y, WANG S Q, CHEN R R, et al. Demystifying why local aggregation helps: convergence analysis of hierarchical SGD [J]. Proceedings of the AAAI conference on artificial intelligence, 2022, 36(8): 8548–8556. DOI: 10.1609/aaai.v36i8.20832
|
13 |
WU W T, HE L G, LIN W W, et al. Accelerating federated learning over reliability-agnostic clients in mobile edge computing systems [J]. IEEE transactions on parallel and distributed systems, 2021, 32(7): 1539–1551. DOI: 10.1109/TPDS.2020.3040867
|
14 |
RIZK E, SAYED A H. A graph federated architecture with privacy preserving learning [C]//The 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021: 131–135. DOI: 10.1109/SPAWC51858.2021.9593148
|
15 |
SUN Y C, SHAO J W, MAO Y Y, et al. Semi-decentralized federated edge learning for fast convergence on non-IID data [C]//Proceedings of IEEE Wireless Communications and Networking Conference (WCNC). IEEE, 2022: 1898–1903. DOI: 10.1109/WCNC51071.2022.9771904
|
16 |
ZHONG Z C, ZHOU Y P, WU D, et al. P-FedAvg: Parallelizing federated learning with theoretical guarantees [C]//IEEE Conference on Computer Communications. IEEE, 2021: 1–10. DOI: 10.1109/INFOCOM42981.2021.9488877
|
17 |
DAS A, PATTERSON S. Multi-tier federated learning for vertically partitioned data [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2021: 3100–3104. DOI: 10.1109/ICASSP39728.2021.9415026
|
18 |
HOSSEINALIPOUR S, BRINTON C G, AGGARWAL V, et al. From federated to fog learning: distributed machine learning over heterogeneous wireless networks [J]. IEEE communications magazine, 58(12): 41–47, 2020. DOI: 10.1109/MCOM.001.2000410
|
19 |
LIN T, STICH S U, PATEL K K, et al. Don’t use large mini-batches, use local SGD [EB/OL]. (2018-08-22) [2024-04-16].
|
20 |
ZHOU F, CONG G J. A distributed hierarchical SGD algorithm with sparse global reduction [EB/OL]. (2022-02-17) [2024-04-16].
|
21 |
ZHU G, LIU D, DU Y, et al. Toward an intelligent edge: wireless communication meets machine learning [J]. IEEE communications magazine, 58(1): 19–25, 2020. DOI: 10.1109/MCOM.001.1900103
|
22 |
KAIROUZ P, MCMAHAN H B, AVENT B, et al. Advances and Open Problems in Federated Learning [J]. Foundations and trends® in machine learning, 14(1–2): 1–210, 2021
|