1 |
TULVAN C, MEKURIA R, LI Z. Use cases for point cloud compression (PCC), output document N16331 [R]. Geneva, Switzerland: ISO/IEC JTC 1/SC29/WG 11 MPEG, 2016
|
2 |
MEKURIA R, BLOM K, Design CESAR P., implementation, and evaluation of a point cloud codec for tele-immersive video [J]. IEEE transactions on circuits and systems for video technology, 2017, 27(4): 828–842. DOI: 10.1109/TCSVT.2016.2543039
|
3 |
MPEG 3D Graphics Coding Group. Call for proposals for point cloud coding v2, output document N16763 [R]. 2017
|
4 |
MPEG 3D Graphics and Haptics Coding Group. V-PCC test model v22, output document N00572 [R]. Antalya, Turkish: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2023
|
5 |
MPEG 3D Graphics and Haptics Coding Group. G-PCC test model v22, output document N00571 [R]. Antalya, Turkish: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2023
|
6 |
SCHNABEL R, KLEIN R. Octree-based point-cloud compression [C]//Symposium on Point-Based Graphics. Eurographics Association, 2006: 111–120. DOI: 10.2312/SPBG/SPBG06/111-120
|
7 |
PENG J L, KUO C C J. Progressive geometry encoder using octree-based space partitioning [C]//2004 IEEE International Conference on Multimedia and Expo (ICME). IEEE, 2004: 1–4. DOI: 10.1109/ICME.2004.1394110
|
8 |
NAKAGAMI O. Report on triangle soup decoding, input document m52279 [R]. Brussels, Belgium: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2020
|
9 |
FLYNN D, TOURAPIS A, MAMMOU K. Predictive geometry coding, input document m51012 [R]. Geneva, Switzerland: ISO/IEC JTC 1/SC 29/WG11 MPEG, 2019
|
10 |
MAMMOU K. PCC test model category 3 v0, output document N17249 [R]. Macau, China: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2017
|
11 |
CHOU P A, DE QUEIROZ R. L. Transform coder for point cloud attributes, input document m38674 [R]. Geneva, Switzerland: ISO/IEC JTC 1/SC29/WG 11 MPEG, 2016
|
12 |
DE QUEIROZ R L, CHOU P A. Compression of 3D point clouds using a region-adaptive hierarchical transform [J]. IEEE transactions on image processing, 2016, 25(8): 3947–3956. DOI: 10.1109/TIP.2016.2575005
|
13 |
FLYNN D, LASSERRE S. G-PCC CE13.18 report on upsampled transform domain prediction in RAHT, input document m49380 [R]. Gothenburg, Sweden: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2019
|
14 |
WANG W, XU Y, ZHANG Ket al. Sub-node-based prediction in transform domain for RAHT, input document m60203 [R]. Online: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2022
|
15 |
MAMMOU K. Point cloud compression core experiment 13.6 on attributes prediction strategies, output document N18007 [R]. Macau, China: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2018
|
16 |
MAMMOU K, TOURAPIS A, KIM J, et al. Proposal for improved lossy compression in TMC1, input document m42640 [R]. San Diego, United states: ISO/IEC JTC 1/SC 29/WG 11 MPEG, 2018
|
17 |
WEI H L, SHAO Y T, WANG J, et al. Enhanced intra prediction scheme in point cloud attribute compression [C]//2019 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2019: 1–4. DOI: 10.1109/VCIP47243.2019.8966001
|
18 |
YEA S. VOSOUGHI A, LIU S. Bilateral filtering for predictive transform in G-PCC, input document m46365 [R]. Marrakech, Morocco: ISO/IEC JTC1/SC 29/WG 11 MPEG, 2019
|
19 |
YIN Q, REN Q S, ZHAO L L, et al. Lossless point cloud attribute compression with normal-based intra prediction [C]//2021 IEEE International Symposium on Broadband Multimedia Systems and Broadcasting (BMSB). IEEE, 2021: 1–5. DOI: 10.1109/BMSB53066.2021.9547021
|
20 |
ZHANG X M, WAN W G, AN X D. Clustering and DCT based color point cloud compression [J]. Journal of signal processing systems, 2017, 86(1): 41–49. DOI: 10.1007/s11265-015-1095-0
|
21 |
COHEN R A, TIAN D, VETRO A. Point cloud attribute compression using 3-D intra prediction and shape-adaptive transforms [C]//2016 Data Compression Conference (DCC). IEEE, 2016: 141–150. DOI: 10.1109/DCC.2016.67
|
22 |
WANG L J, WANG L Y, LUO Y T, et al. Point-Cloud compression using data independent method—a 3D discrete cosine transform approach [C]//2017 IEEE International Conference on Information and Automation (ICIA). IEEE, 2017: 1–6. DOI: 10.1109/icinfa.2017.8078873
|
23 |
ZHANG C, FLORÊNCIO D, LOOP C. Point cloud attribute compression with graph transform [C]//2014 IEEE International Conference on Image Processing (ICIP). IEEE, 2014: 2066–2070. DOI: 10.1109/ICIP.2014.7025414
|
24 |
SHAO Y T, ZHANG Z B, LI Z, et al. Attribute compression of 3D point clouds using Laplacian sparsity optimized graph transform [C]//2017 IEEE Visual Communications and Image Processing (VCIP). IEEE, 2017: 1–4. DOI: 10.1109/VCIP.2017.8305131
|
25 |
XU Y Q, HU W, WANG S S, et al. Cluster-based point cloud coding with normal weighted graph Fourier transform [C]//2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2018: 1753–1757. DOI: 10.1109/ICASSP.2018.8462684
|
26 |
XU Y Q, HU W, WANG S S, et al. Predictive generalized graph Fourier transform for attribute compression of dynamic point clouds [J]. IEEE transactions on circuits and systems for video technology, 2021, 31(5): 1968–1982. DOI: 10.1109/TCSVT.2020.3015901
|
27 |
HOODA R, PAN W D. Early termination of dyadic region-adaptive hierarchical transform for efficient attribute compression of 3D point clouds [J]. IEEE signal processing letters, 2022, 29: 214–218. DOI: 10.1109/LSP.2021.3133204
|
28 |
MPEG 3D Graphics and Haptics Coding Group. TMC13 software repository [EB/OL]. (2023-06-02)[2023-11-20].
|
29 |
MPEG 3D Graphics and Haptics Coding Group. GeS-TM software repository [EB/OL]. (2023-06-05)[2023-11-20].
|
30 |
MPEG 3D Graphics and Haptics Coding Group. Common test conditions for G-PCC, output document N00578 [R]. Antalya, Turkish: ISO/IEC JTC 1/SC29/WG 11 MPEG, 2023
|
31 |
MPEG 3D Graphics and Haptics Coding Group. MPEG content repository [EB/OL]. (2023-03-17)[2023-11-20].
|