1 |
LIU J J, SHI Y P, FADLULLAH Z M, et al. Space-air-ground integrated network: a survey [J]. IEEE communications surveys & tutorials, 2018, 20(4): 2714–2741. DOI: 10.1109/COMST.2018.2841996
DOI
URL
|
2 |
DING R, CHEN T T, LIU L, et al. 5G integrated satellite communication systems: architectures, air interface, and standardization [C]//International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020: 702–707. DOI: 10.1109/WCSP49889.2020.9299757
DOI
URL
|
3 |
DENG R Q, DI B Y, ZHANG H L, et al. Ultra-dense LEO satellite constellation design for global coverage in terrestrial-satellite networks [C]//Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM42002.2020.9322362
DOI
URL
|
4 |
DUAN C F, DUAN R Q, FENG J, et al. A novel channel allocation strategy in low earth orbit satellite networks [C]//6th International Conference on Computer and Communications (ICCC). IEEE, 2021: 8–13. DOI: 10.1109/ICCC51575.2020.9345173
DOI
URL
|
5 |
ZHOU J, YE X G, PAN Y, et al. Dynamic channel reservation scheme based on priorities in LEO satellite systems [J]. Journal of systems engineering and electronics, 2015, 26(1): 1–9. DOI: 10.1109/JSEE.2015.00001
DOI
URL
|
6 |
LI Z W, XIE Z C, LIANG X W. Dynamic channel reservation strategy based on DQN algorithm for multi-service LEO satellite communication system [J]. IEEE wireless communications letters, 2021, 10(4): 770–774. DOI: 10.1109/LWC.2020.3043073
DOI
URL
|
7 |
MARAL G, RESTREPO J, DEL RE E, et al. Performance analysis for a guaranteed handover service in an LEO constellation with a “satellite-fixed cell” system [J]. IEEE transactions on vehicular technology, 1998, 47(4): 1200–1214. DOI: 10.1109/25.728509
DOI
URL
|
8 |
WANG X L, WANG X X. The research of channel reservation strategy in LEO satellite network [C]//11th International Conference on Dependable, Autonomic and Secure Computing. IEEE, 2014: 590–594. DOI: 10.1109/DASC.2013.131
DOI
URL
|
9 |
BOUKHATEM L, GAITI D, PUJOLLE G. A channel reservation algorithm for handover issues in LEO satellite systems based on a satellite-fixed cell coverage [C]//IEEE VTS 53rd Vehicular Technology Conference. IEEE, 2001: 2975–2979. DOI: 10.1109/VETECS.2001.944147
DOI
URL
|
10 |
BEYLOT A L, BOUMERDASSI S. Adaptive channel reservation schemes in multitraffic LEO satellite systems [C]//IEEE Global Telecommunications Conference. IEEE, 2002: 2740–2743. DOI: 10.1109/GLOCOM.2001.966272
DOI
URL
|
11 |
ZOU Q Y, ZHU L D. Dynamic channel allocation strategy of satellite communication systems based on grey prediction [C]//International Symposium on Networks, Computers and Communications (ISNCC). IEEE, 2019: 1–5. DOI: 10.1109/ISNCC.2019.8909122
DOI
URL
|
12 |
CHATTERJEE S, SAHA J, BANERJEE S, et al. Neighbour Location Based Channel Reservation scheme for LEO Satellite communication [C]//International Conference on Communications, Devices and Intelligent Systems (CODIS). IEEE, 2012: 73–76. DOI: 10.1109/CODIS.2012.6422139
DOI
URL
|
13 |
RAHMAN M, WALINGO T, TAKAWIRA F. Adaptive handover scheme for LEO satellite communication system [C]//Proceedings of AFRICON. IEEE, 2015: 1–5. DOI: 10.1109/AFRCON.2015.7332051
DOI
URL
|
14 |
CHEN L M, GUO Q, WANG H Y. A handover management scheme based on adaptive probabilistic resource reservation for multimedia LEO satellite networks [C]//WASE International Conference on Information Engineering. IEEE, 2010: 255–259. DOI: 10.1109/ICIE.2010.67
DOI
URL
|
15 |
LIU S J, HU X, WANG W D. Deep reinforcement learning based dynamic channel allocation algorithm in multibeam satellite systems [J]. IEEE access, 2018, 6: 15733–15742. DOI: 10.1109/ACCESS.2018.2809581
DOI
URL
|
16 |
CHOWDHURY P K, ATIQUZZAMAN M, IVANCIC W. Handover schemes in satellite networks: state-of-the-art and future research directions [J]. IEEE communications surveys & tutorials, 2006, 8(4): 2–14. DOI: 10.1109/COMST.2006.283818
DOI
URL
|
17 |
BHATNAGAR S, SUTTON R S, GHAVAMZADEH M, et al. Natural actor‑critic algorithms [J]. Automatica, 2009, 45(11): 2471–2482. DOI: 10.1016/j.automatica.2009.07.008
DOI
URL
|