| 1 |
ELKAZZI R, KHALIL A. Energy-saving solution for future cellular systems [C]//The 4th International Conference on Renewable Energies for Developing Countries (REDEC). IEEE, 2019: 1–6. DOI: 10.1109/REDEC.2018.8597671
DOI
|
| 2 |
TONG E, WANG Y, DING F, et al. A practical eNB off/on based energy saving scheme for real LTE networks [C]//The 17th International Conference on Advanced Communication Technology (ICACT). IEEE, 2015: 12–17
|
| 3 |
HAN T, ANSARI N. On greening cellular networks via multicell cooperation [J]. IEEE wireless communications, 2013, 20(1): 82–89. DOI: 10.1109/MWC.2013.6472203
DOI
|
| 4 |
3GPP. Eutran overall description: TS 36.300 [S]. 2019
|
| 5 |
3GPP. Study on ran-centric data collection and utilization for LTE and NR: TS 37.816 [S]. 2019
|
| 6 |
FU Y, WANG S, WANG C X, et al. Artificial intelligence to manage network traffic of 5G wireless networks [J]. IEEE network, 2018, 32(6): 58–64. DOI: 10.1109/MNET.2018.1800115
DOI
|
| 7 |
LI R P, ZHAO Z F, ZHOU X, et al. Intelligent 5G: when cellular networks meet artificial intelligence [J]. IEEE wireless communications, 2017, 24(5): 175–183. DOI: 10.1109/MWC.2017.1600304WC
DOI
|
| 8 |
P’EREZ-ROMER J O, SALLENT O, FERR ́US R, et al. Knowledge-based 5G radio access network planning and optimization [C]//The International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2016: 359–365
|
| 9 |
GAO Y, CHEN J J, LIU Z, et al. Machine learning based energy saving scheme in wireless access networks [C]//Proceedings of 2020 International Wireless Communications and Mobile Computing (IWCMC). IEEE, 2020: 1573–1578. DOI: 10.1109/IWCMC48107.2020.9148536
DOI
|
| 10 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. DOI: 10.1145/3065386
DOI
|
| 11 |
3GPP. Study on enhancement for data collection for NR and EN-DC: TR 37.817 [S]. 2022
|