1 |
CHEN W S, LIN X Q, LEE J, et al. 5G-advanced toward 6G: past, present, and future [J]. IEEE journal on selected areas in communications, 2023, 41(6): 1592–1619. DOI: 10.1109/JSAC.2023.3274037
|
2 |
CHEN W, LIU Y W, JAFARKHANI H, et al. Signal processing and learning for next generation multiple access in 6G [J]. IEEE journal of selected topics in signal processing, 2024, 18(7): 1146–1177. DOI: 10.1109/JSTSP.2024.3511403
|
3 |
WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback [J]. IEEE wireless communications letters, 2018, 7(5): 748–751. DOI: 10.1109/LWC.2018.2818160
|
4 |
GAO Y CHEN J J, LI D P. Intelligence driven wireless networks in B5G and 6G era: a survey [J]. ZTE communications, 2024, 22(3): 99–105. DOI: 10.12142/ZTECOM.202403012
|
5 |
YANG B LIANG X, LIU S N, et al. Intelligent 6G wireless network with multi-dimensional information perception [J]. ZTE communications, 2023, 21(2): 3–10. DOI: 10.12142/ZTECOM.202302002
|
6 |
GUO Y R, CHEN W, SUN F F, et al. Deep learning for CSI feedback: one-sided model and joint multi-module learning perspectives [EB/OL]. (2024-05-09)[2024-12-12].
|
7 |
CHENG J M, CHEN W, XU J L, et al. Swin Transformer-based CSI feedback for massive MIMO [C]//The 23rd International Conference on Communication Technology (ICCT). IEEE, 2023: 809–814. DOI: 10.1109/ICCT59356.2023.10419637
|
8 |
YI X P, YANG S, GESBERT D, et al. The degrees of freedom region of temporally correlated MIMO networks with delayed CSIT [J]. IEEE transactions on information theory, 2014, 60(1): 494–514. DOI: 10.1109/TIT.2013.2284500
|
9 |
MIHAI S, YAQOOB M, HUNG D V, et al. Digital twins: a survey on enabling technologies, challenges, trends and future prospects [J]. IEEE communications surveys & tutorials, 2022, 24(4): 2255–2291. DOI: 10.1109/COMST.2022.3208773
|
10 |
TAN J SHA X B, DAI B, et al. Analysis of industrial Internet of Things and digital twins [J]. ZTE communications, 2021, 19(2): 53–60. DOI: 10.12142/ZTECOM.202102007
|
11 |
YIN H F, WANG H Q, LIU Y Z, et al. Addressing the curse of mobility in massive MIMO with prony-based angular-delay domain channel predictions [J]. IEEE journal on selected areas in communications, 2020, 38(12): 2903–2917. DOI: 10.1109/JSAC.2020.3005473
|
12 |
BADDOUR K E, BEAULIEU N C. Autoregressive modeling for fading channel simulation [J]. IEEE transactions on wireless communications, 2005, 4(4): 1650–1662. DOI: 10.1109/TWC.2005.850327
|
13 |
JIANG W, SCHOTTEN H D. Neural network-based fading channel prediction: A comprehensive overview [J]. IEEE access, 2019, 7: 118112–118124. DOI: 10.1109/ACCESS.2019.2937588
|
14 |
JIANG W, SCHOTTEN H D. Deep learning for fading channel prediction [J]. IEEE open journal of the communications society, 2020, 1: 320–332. DOI: 10.1109/OJCOMS.2020.2982513
|
15 |
JIANG H, CUI M Y, NG D W K, et al. Accurate channel prediction based on transformer: making mobility negligible [J]. IEEE journal on selected areas in communications, 2022, 40(9): 2717–2732. DOI: 10.1109/JSAC.2022.3191334
|
16 |
REN Z Z, ZHANG X D, WANG J T. Joint CSI feedback and prediction with deep learning in high-speed scenarios [C]//Proceedings of IEEE/CIC International Conference on Communications in China (ICCC). IEEE, 2024: 1910–1915. DOI: 10.1109/ICCC62479.2024.10681972
|
17 |
SZEGEDY C, LIU W, JIA Y Q, et al. Going deeper with convolutions [C]//Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015: 1–9. DOI: 10.1109/CVPR.2015.7298594
|
18 |
GAO Z Y, TAN C, WU L R, et al. SimVP: Simpler yet better video prediction [C]//Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2022: 3160–3170. DOI: 10.1109/CVPR52688.2022.00317
|
19 |
XU J L, AI B, CHEN W, et al. Wireless image transmission using deep source channel coding with attention modules [J]. IEEE transactions on circuits and systems for video technology, 2022, 32(4): 2315–2328. DOI: 10.1109/TCSVT.2021.3082521
|
20 |
XU J L, AI B, WANG N, et al. Deep joint source-channel coding for CSI feedback: an end-to-end approach [J]. IEEE journal on selected areas in communications, 2023, 41(1): 260–273. DOI: 10.1109/JSAC.2022.3221963
|
21 |
YANG K, WANG S X, DAI J C, et al. WITT: a wireless image transmission transformer for semantic communications [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1–5. DOI: 10.1109/ICASSP49357.2023.10094735
|
22 |
DENG L T ZHAO Y R. Deep learning-based semantic feature extraction: a literature review and future directions [J]. ZTE communications, 2023, 21(2): 11–17. DOI: 10.12142/ZTECOM.202302003
|
23 |
3GPP. Study on channel model for frequencies from 0.5 to 100 GHz: TR 38.901 V18.0.0 [S]. 2024
|
24 |
WU C, YI X P, ZHU Y M, et al. Channel prediction in high-mobility massive MIMO: from spatio-temporal autoregression to deep learning [J]. IEEE journal on selected areas in communications, 2021, 39(7): 1915–1930. DOI: 10.1109/JSAC.2021.3078503
|
25 |
YUAN J D, NGO H Q, MATTHAIOU M. Machine learning-based channel prediction in massive MIMO with channel aging [J]. IEEE transactions on wireless communications, 2020, 19(5): 2960–2973. DOI: 10.1109/TWC.2020.2969627
|
26 |
JAECKEL S, RASCHKOWSKI L, BÖRNER K, et al. Quasi deterministic radio channel generator, user manual and documentation [R]. Berlin, Germany: QuaDRiGa, 2021
|