1 |
NADEEM Q U A, KAMMOUN A, ALOUINI M S. Elevation beamforming with full dimension MIMO architectures in 5G systems: a tutorial [J]. IEEE communications surveys & tutorials, 2019, 21(4): 3238–3273. DOI: 10.1109/COMST.2019.2930621
DOI
URL
|
2 |
LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems [J]. IEEE communications magazine, 2014, 52(2): 186–195. DOI: 10.1109/MCOM.2014.6736761
DOI
URL
|
3 |
CASTAÑEDA E, SILVA A, GAMEIRO A, et al. An overview on resource allocation techniques for multi-user MIMO systems [J]. IEEE communications surveys & tutorials, 2017, 19(1): 239–284. DOI: 10.1109/COMST.2016.2618870
DOI
URL
|
4 |
CHRISTENSEN S S, AGARWAL R, DE CARVALHO E, et al. Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design [J]. IEEE transactions on wireless communications, 2008, 7(12): 4792–4799. DOI: 10.1109/T-WC.2008.070851
DOI
URL
|
5 |
SHI Q J, RAZAVIYAYN M, LUO Z Q, et al. An iteratively weighted MMSE approach to distributed sum-utility maximization for a MIMO interfering broadcast channel [J]. IEEE transactions on signal processing, 2011, 59(9): 4331–4340. DOI: 10.1109/TSP.2011.2147784
DOI
URL
|
6 |
WU Y P, JIN S, GAO X Q, et al. Transmit designs for the MIMO broadcast channel with statistical CSI [J]. IEEE transactions on signal processing, 2014, 62(17): 4451–4466. DOI: 10.1109/TSP.2014.2336637
DOI
URL
|
7 |
WU D Y, ZHANG H T. Tractable modelling and robust coordinated beamforming design with partially accurate CSI [J]. IEEE wireless communications letters, 2021, 10(11): 2384–2387. DOI: 10.1109/LWC.2021.3101037
DOI
URL
|
8 |
ZHENG J K, ZHANG J Y, BJÖRNSON E, et al. Impact of channel aging on cell-free massive MIMO over spatially correlated channels [J]. IEEE transactions on wireless communications, 2021, 20(10): 6451–6466. DOI: 10.1109/TWC.2021.3074421
DOI
URL
|
9 |
LIU L H, FENG H, YANG T, et al. MIMO-OFDM wireless channel prediction by exploiting spatial-temporal correlation [J]. IEEE transactions on wireless communications, 2014, 13(1): 310–319. DOI: 10.1109/TWC.2013.112613.130455
DOI
URL
|
10 |
YIN H F, WANG H Q, LIU Y Z, et al. Addressing the curse of mobility in massive MIMO with prony-based angular-delay domain channel predictions [J]. IEEE journal on selected areas in communications, 2020, 38(12): 2903–2917. DOI: 10.1109/JSAC.2020.3005473
DOI
URL
|
11 |
WU C, YI X P, ZHU Y M, et al. Channel prediction in high-mobility massive MIMO: from spatio-temporal autoregression to deep learning [J]. IEEE journal on selected areas in communications, 2021, 39(7): 1915–1930. DOI: 10.1109/JSAC.2021.3078503
DOI
URL
|
12 |
THEODORIDIS S. Machine learning: a Bayesian and optimization perspective [M]. Orlando, USA: Academic press, 2015
|
13 |
YUAN J D, NGO H Q, MATTHAIOU M. Machine learning-based channel prediction in massive MIMO with channel aging [J]. IEEE transactions on wireless communications, 2020, 19(5): 2960–2973. DOI: 10.1109/TWC.2020.2969627
DOI
URL
|
14 |
XU K, SHEN Z X, WANG Y R, et al. Location-aided mMIMO channel tracking and hybrid beamforming for high-speed railway communications: an angle-domain approach [J]. IEEE systems journal, 2020, 14(1): 93–104. DOI: 10.1109/JSYST.2019.2911296
DOI
URL
|
15 |
XIA X C, XU K, ZHAO S B, et al. Learning the time-varying massive MIMO channels: robust estimation and data-aided prediction [J]. IEEE transactions on vehicular technology, 2020, 69(8): 8080–8096. DOI: 10.1109/TVT.2020.2968637
DOI
URL
|
16 |
ENGEL Y, MANNOR S, MEIR R. The kernel recursive least-squares algorithm [J]. IEEE transactions on signal processing, 2004, 52(8): 2275–2285. DOI: 10.1109/TSP.2004.830985
DOI
URL
|
17 |
LIU W F, PARK I, PRINCIPE J C. An information theoretic approach of designing sparse kernel adaptive filters [J]. IEEE transactions on neural networks, 2009, 20(12): 1950–1961. DOI: 10.1109/TNN.2009.2033676
DOI
URL
|
18 |
MIN C, CHANG N, CHA J, et al. MIMO-OFDM downlink channel prediction for IEEE802.16e systems using Kalman filter [C]//IEEE Wireless Communications and Networking Conference. IEEE, 2007: 942–946. DOI: 10.1109/WCNC.2007.179
DOI
URL
|
19 |
RAMYA T R, BHASHYAM S. On using channel prediction in adaptive beamforming systems [C]//2nd International Conference on Communication Systems Software and Middleware. IEEE, 2007: 1–6. DOI: 10.1109/COMSWA.2007.382451
DOI
URL
|
20 |
MARTOS-NAYA E, PARIS J F, FERNANDEZ-PLAZAOLA U, et al. Exact BER analysis for M-QAM modulation with transmit beamforming under channel prediction errors [J]. IEEE transactions on wireless communications, 2008, 7(10): 3674–3678. DOI: 10.1109/T-WC.2008.070192
DOI
URL
|
21 |
PARIS J F, MARTOS-NAYA E, FERNANDEZ-PLAZAOLA U, et al. Analysis of adaptive MIMO transmit beamforming under channel prediction errors based on incomplete lipschitz–hankel integrals [J]. IEEE transactions on vehicular technology, 2009, 58(6): 2815–2824. DOI: 10.1109/TVT.2008.2011990
DOI
URL
|
22 |
SUN Y, BABU P, PALOMAR D P. Majorization-minimization algorithms in signal processing, communications, and machine learning [J]. IEEE transactions on signal processing, 2017, 65(3): 794–816. DOI: 10.1109/TSP.2016.2601299
DOI
URL
|
23 |
LU A N, GAO X Q, XIAO C S. Free deterministic equivalents for the analysis of MIMO multiple access channel [J]. IEEE transactions on information theory, 2016, 62(8): 4604–4629. DOI: 10.1109/TIT.2016.2573309
DOI
URL
|
24 |
TULINO A M, VERDÚ S. Random matrix theory and wireless communications [M]. Norwell, USA: Now Publishers Inc, 2004. DOI: 10.1561/9781933019505
DOI
URL
|
25 |
3GPP. Study on channel model for frequencies from 0.5 to 100 GHz: TR 38.901 [S]. 2019
|