1 |
ZHANG T, GAO L, HE C Y, et al. Federated learning for the Internet of Things: applications, challenges, and opportunities [J]. IEEE Internet of Things magazine, 2022, 5(1): 24–29. DOI: 10.1109/IOTM.004.2100182
|
2 |
GUO F X, YU F R, ZHANG H L, et al. Enabling massive IoT toward 6G: a comprehensive survey [J]. IEEE Internet of Things journal, 2021, 8(15): 11891–11915. DOI: 10.1109/JIOT.2021.3063686
|
3 |
MOHAMMADI F G, SHENAVARMASOULEH F, ARABNIA H R. Applications of machine learning in healthcare and Internet of Things (IOT): a comprehensive review [EB/OL]. [2022-10-10].
|
4 |
VERBRAEKEN J, WOLTING M, KATZY J, et al. A survey on distributed machine learning [J]. ACM computing surveys, 2021, 53(2): 1–33. DOI: 10.1145/3377454
|
5 |
MAJEED I A, KAUSHIK S, BARDHAN A, et al. Comparative assessment of federated and centralized machine learning [EB/OL]. [2022-10-10].
|
6 |
GUPTA R, ALAM T. Survey on federated-learning approaches in distributed environment [J]. Wireless personal communications, 2022, 125(2): 1631–1652. DOI: 10.1007/s11277-022-09624-y
|
7 |
JIANG Y L, ZHANG K, QIAN Y, et al. Anonymous and efficient authentication scheme for privacy-preserving distributed learning [J]. IEEE transactions on information forensics and security, 2022, 17: 2227–2240. DOI: 10.1109/TIFS.2022.3181848
|
8 |
TRELEAVEN P, SMIETANKA M, PITHADIA H. Federated learning: the pioneering distributed machine learning and privacy-preserving data technology [J]. Computer, 2022, 55(4): 20–29. DOI: 10.1109/MC.2021.3052390
|
9 |
LI T, SAHU A K, TALWALKAR A, et al. Federated learning: challenges, methods, and future directions [J]. IEEE signal processing magazine, 2020, 37(3): 50–60. DOI: 10.1109/MSP.2020.2975749
|
10 |
LIU J, HUANG J Z, ZHOU Y, et al. From distributed machine learning to federated learning: A survey [J]. Knowledge and information systems, 2022, 64(4): 885–917. DOI: 10.1007/s10115-022-01664-x
|
11 |
ALEDHARI M, RAZZAK R, PARIZI R M, et al. Federated learning: a survey on enabling technologies, protocols, and applications [J]. IEEE access: practical innovations, open solutions, 2020, 8: 140699–140725. DOI: 10.1109/access.2020.3013541
|
12 |
ABREHA H G, HAYAJNEH M, SERHANI M A. Federated learning in edge computing: a systematic survey [J]. Sensor, 2022, 22(2): 450. DOI: 10.3390/s22020450
|
13 |
LIM W Y B, LUONG N C, HOANG D T, et al. Federated learning in mobile edge networks: a comprehensive survey [J]. IEEE communications surveys & tutorials, 2020, 22(3): 2031–2063. DOI: 10.1109/COMST.2020.2986024
|
14 |
NGUYEN D C, PHAM Q V, PATHIRANA P N, et al. Federated learning for smart healthcare: a survey [J]. ACM computing surveys, 2023, 55(3): 1–37. DOI: 10.1145/3501296
|
15 |
ZHENG Z H, ZHOU Y Z, SUN Y L, et al. Applications of federated learning in smart cities: Recent advances, taxonomy, and open challenges [J]. Connection science, 2022, 34(1): 1–28. DOI: 10.1080/09540091.2021.1936455
|
16 |
YANG Z H, CHEN M Z, SAAD W, et al. Energy efficient federated learning over wireless communication networks [J]. IEEE transactions on wireless communications, 2021, 20(3): 1935–1949. DOI: 10.1109/TWC.2020.3037554
|
17 |
CHEN M Z, YANG Z H, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks [J]. IEEE transactions on wireless communications, 2021, 20(1): 269–283. DOI: 10.1109/TWC.2020.3024629
|
18 |
NADEEM F, LI Y H, VUCETIC B, et al. Analysis and optimization of HARQ for URLLC [C]//IEEE Globecom Workshops. IEEE, 2022: 1–6. DOI: 10.1109/GCWkshps52748.2021.9682028
|
19 |
JIANG P W, WEN C K, JIN S, et al. Deep source-channel coding for sentence semantic transmission with HARQ [J]. IEEE transactions on communications, 2022, 70(8): 5225–5240. DOI: 10.1109/TCOMM.2022.3180997
|
20 |
SHIRVANIMOGHADDAM M, SALARI A, GAO Y F, et al. Federated learning with erroneous communication links [J]. IEEE communications letters, 2022, 26(6): 1293–1297. DOI: 10.1109/LCOMM.2022.3167094
|
21 |
SALARI A, SHIRVANIMOGHADDAM M, VUCETIC B, et al. Rate-convergence tradeoff of federated learning over wireless channel [EB/OL]. [2022-10-10].
|
22 |
YE H, LIANG L, LI G Y. Decentralized federated learning with unreliable communications [J]. IEEE journal of selected topics in signal processing, 2022, 16(3): 487–500. DOI: 10.1109/JSTSP.2022.3152445
|
23 |
JEONG E, ZECCHIN M, KOUNTOURIS M. Asynchronous decentralized learning over unreliable wireless networks [EB/OL]. [2022-10-10].
|
24 |
LI Z D, ZHOU Y J, WU D P, et al. Fairness-aware federated learning with unreliable links in resource-constrained Internet of Things [J]. IEEE Internet of Things journal, 2022, 9(18): 17359–17371. DOI: 10.1109/JIOT.2022.3156046
|
25 |
MAO Y Z, ZHAO Z H, YANG M L, et al. SAFARI: sparsity enabled federated learning with limited and unreliable communications [EB/OL]. [2022-10-10].
|
26 |
SALEHI M, HOSSAIN E. Federated learning in unreliable and resource-constrained cellular wireless networks [J]. IEEE transactions on communications, 2021, 69(8): 5136–5151. DOI: 10.1109/TCOMM.2021.3081746
|
27 |
JIANG Z H, YU G D, CAI Y L, et al. Decentralized edge learning via unreliable device-to-device communications [J]. IEEE transactions on wireless communications, 2022, 21(11): 9041–9055. DOI: 10.1109/TWC.2022.3172147
|
28 |
NADEEM F, LI Y H, VUCETIC B, et al. HARQ optimization for real-time remote estimation in wireless networked control [EB/OL]. [2022-10-10].
|
29 |
SHAH S W H, RAHMAN M M U, MIAN A N, et al. Effective capacity analysis of HARQ-enabled D2D communication in multi-tier cellular networks [J]. IEEE transactions on vehicular technology, 2021, 70(9): 9144–9159. DOI: 10.1109/TVT.2021.3100675
|
30 |
LIU D Z, ZHU G X, ZENG Q S, et al. Wireless data acquisition for edge learning: data-importance aware retransmission [J]. IEEE transactions on wireless communications, 2021, 20(1): 406–420. DOI: 10.1109/TWC.2020.3024980
|
31 |
SIMONSSON A, FURUSKAR A. Uplink power control in LTE - overview and performance, subtitle: principles and benefits of utilizing rather than compensating for SINR variations [C]//IEEE 68th Vehicular Technology Conference. IEEE, 2008: 1–5. DOI: 10.1109/VETECF.2008.317
|
32 |
XI Y, BURR A, WEI J B, et al. A general upper bound to evaluate packet error rate over quasi-static fading channels [J]. IEEE transactions on wireless communications, 2011, 10(5): 1373–1377. DOI: 10.1109/TWC.2011.012411.100787
|