ZTE Communications ›› 2022, Vol. 20 ›› Issue (S1): 44-56.DOI: 10.12142/ZTECOM.2022S1007
收稿日期:
2021-07-05
出版日期:
2022-01-25
发布日期:
2022-03-01
XU Yujie1, ZHAO Qingchen1, XU Xiaodong1(), QIN Xiaowei1, CHEN Jianqiang2
Received:
2021-07-05
Online:
2022-01-25
Published:
2022-03-01
About author:
XU Yujie received the B. Eng. and M. Eng. degree in electronic and information engineering from University of Science and Technology of China (USTC), China in 2017 and 2021. His research interest is deep learning for wireless signal identification.|ZHAO Qingchen received the B.Eng. degree in electronic information engineering from Anhui University of Finance and Economics, China in 2018. He is currently pursuing his M. Eng. degree in Department of Electronic Engineering and Information Science, University of Science and Technology of China (USTC), China. His research interest is smart transmission.|XU Xiaodong (Supported by:
. [J]. ZTE Communications, 2022, 20(S1): 44-56.
XU Yujie, ZHAO Qingchen, XU Xiaodong, QIN Xiaowei, CHEN Jianqiang. Multi-Task Learning with Dynamic Splitting for Open-Set Wireless Signal Recognition[J]. ZTE Communications, 2022, 20(S1): 44-56.
Signal Types | Scenes | Frequency | Bandwidth | Samples per Classes |
---|---|---|---|---|
Wi-Fi, Bluetooth, cordless phone, wide-band FM, ZigBee, microwave oven, analog video monitor, narrow-band digital signal, wide-band OFDM signal, game control signal | Line-of-sight (1, 3, 5, 7 m); Non-line-of-sight (1, 3 m) | 2.442 GHz | 20 MHz | 7 500 |
Table 1 WS dataset parameters
Signal Types | Scenes | Frequency | Bandwidth | Samples per Classes |
---|---|---|---|---|
Wi-Fi, Bluetooth, cordless phone, wide-band FM, ZigBee, microwave oven, analog video monitor, narrow-band digital signal, wide-band OFDM signal, game control signal | Line-of-sight (1, 3, 5, 7 m); Non-line-of-sight (1, 3 m) | 2.442 GHz | 20 MHz | 7 500 |
1 |
RAYANCHU S, PATRO A, BANERJEE S. Airshark: detecting non-WiFi RF devices using commodity WiFi hardware [C]//ACM SIGCOMM conference on Internet measurement conference. ACM, 2011: 137–154. DOI: 10.1145/2068816.2068830
DOI URL |
2 |
LI X F, DONG F W, ZHANG S, et al. A survey on deep learning techniques in wireless signal recognition [J]. Wireless communications and mobile computing, 2019, 2019: 5629572. DOI: 10.1155/2019/5629572
DOI URL |
3 |
DOBRE O A, HAMEED F. Likelihood-based algorithms for linear digital modulation classification in fading channels [C]//Canadian Conference on Electrical and Computer Engineering. IEEE, 2006: 1347–1350. DOI: 10.1109/CCECE.2006.277525
DOI URL |
4 |
CHAVALI V G, SILVA C R C MDA. Maximum-likelihood classification of digital amplitude-phase modulated signals in flat fading non-Gaussian channels [J]. IEEE transactions on communications, 2011, 59(8): 2051–2056. DOI: 10.1109/TCOMM.2011.051711.100184
DOI URL |
5 |
PALICOT J, ROLAND C. A new concept for wireless reconfigurable receivers [J]. IEEE communications magazine, 2003, 41(7): 124–132. DOI: 10.1109/MCOM.2003.1215649
DOI URL |
6 |
KIM K, AKBAR I A, BAE K K, et al. Cyclostationary approaches to signal detection and classification in cognitive radio [C]//IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks. IEEE, 2007: 212–215. DOI: 10.1109/DYSPAN.2007.35
DOI URL |
7 |
KIM Y, AN S, SO J. Identifying signal source using channel state information in wireless LANs [C]//International Conference on Information Networking (ICOIN). IEEE, 2018: 616–621. DOI: 10.1109/ICOIN.2018.8343192
DOI URL |
8 |
YANG Z S, WANG Y X, ZHANG L J, et al. Indoor interference classification based on WiFi channel state information [C]//Proc. International Conference on Security, Privacy and Anonymity in Computation, Communication and Storage. Springer, 2018: 136–145. DOI: 10.1007/978-3-030-05345-1_11
DOI URL |
9 |
KULIN M, KAZAZ T, MOERMAN I, et al. End-to-end learning from spectrum data: A deep learning approach for wireless signal identification in spectrum monitoring applications [J]. IEEE access, 2018, 6: 18484–18501. DOI: 10.1109/ACCESS.2018.2818794
DOI URL |
10 |
RIYAZ S, SANKHE K, IOANNIDIS S, et al. Deep learning convolutional neural networks for radio identification [J]. IEEE communications magazine, 2018, 56(9): 146–152. DOI: 10.1109/MCOM.2018.1800153
DOI URL |
11 |
NAYLOR A R. Known knowns, known unknowns and unknown unknowns: a 2010 update on carotid artery disease [J]. The surgeon, 2010, 8(2): 79–86. DOI: 10.1016/j.surge.2010.01.006
DOI URL |
12 |
O’SHEA T J, ROY T, CLANCY T C. Over-the-air deep learning based radio signal classification [J]. IEEE journal of selected topics in signal processing, 2018, 12(1): 168–179. DOI: 10.1109/JSTSP.2018.2797022
DOI URL |
13 |
GENG C X, HUANG S J, CHEN S C. Recent advances in open set recognition: A survey [J]. IEEE transactions on pattern analysis and machine intelligence, 2021, 43(10): 3614–3631. DOI: 10.1109/TPAMI.2020.2981604
DOI URL |
14 |
MENDES JÚNIOR P R, SOUZA R M, DE O WERNECK R, et al. Nearest neighbors distance ratio open-set classifier [J]. Machine learning, 2017, 106(3): 359–386. DOI: 10.1007/s10994-016-5610-8
DOI URL |
15 |
BENDALE A, BOULT T E. Towards open set deep networks [C]//IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 1563–1572. DOI: 10.1109/CVPR.2016.173
DOI URL |
16 |
SCHEIRER W J, ROCHA A, MICHEALS R J, et al. Meta-recognition: The theory and practice of recognition score analysis [J]. IEEE transactions on pattern analysis and machine intelligence, 2011, 33(8): 1689–1695. DOI: 10.1109/TPAMI.2011.54
DOI URL |
17 |
YOSHIHASHI R, SHAO W, KAWAKAMI R, et al. Classification-reconstruction learning for open-set recognition [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2019: 4011–4020. DOI: 10.1109/CVPR.2019.00414
DOI URL |
18 | NEAL L, OLSON M, FERN X, et al. Open set learning with counterfactual images [C]//Proc. European Conference on Computer Vision (ECCV). Springer, 2018: 613–628 |
19 |
JO I, KIM J, KANG H, et al. Open set recognition by regularising classifier with fake data generated by generative adversarial networks [C]//IEEE International Conference on Acoustics, Speech and Signal Processing. IEEE, 2018: 2686–2690. DOI: 10.1109/ICASSP.2018.8461700
DOI URL |
20 | YU Y, QU W Y, LI N, et al. Open-category classification by adversarial sample generation [EB/OL]. (2017-06-17)[2020-10-15]. |
21 | CRAWSHAW M. Multi-task learning with deep neural networks: A survey [EB/OL]. (2020-09-10)[2021-10-15]. |
22 |
PERERA P, MORARIU V I, JAIN R, et al. Generative-discriminative feature representations for open-set recognition [C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2020: 11811–11820. DOI: 10.1109/CVPR42600.2020.01183
DOI URL |
23 | OZA P, PATEL V M. Deep CNN-based multi-task learning for open-set recognition [EB/OL]. (2019-03-07)[2020-10-15]. |
24 |
YU Q, IKAMI D, IRIE G, et al. Multi-task curriculum framework for open-set semi-supervised learning [C]//European Conference on Computer Vision. Springer, 2020: 438–454. DOI: 10.1007/978-3-030-58610-2_26
DOI URL |
25 |
XU Y J, QIN X W, XU X D, et al. Open-set interference signal recognition using boundary samples: A hybrid approach [C]//International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2020: 269–274. DOI: 10.1109/WCSP49889.2020.9299700
DOI URL |
26 |
YI S, WANG H, XUE W Q, et al. Interference source identification for IEEE 802.15.4 wireless sensor networks using deep learning [C]//29th Annual International Symposium on Personal, Indoor and Mobile Radio Communications. IEEE, 2018: 1–7. DOI: 10.1109/PIMRC.2018.8580857
DOI URL |
27 |
CROCE D, GARLISI D, GIULIANO F, et al. Learning from errors: detecting cross-technology interference in WiFi networks [J]. IEEE transactions on cognitive communications and networking, 2018, 4(2): 347–356. DOI: 10.1109/TCCN.2018.2816068
DOI URL |
28 |
SCHLACHTER P, LIAO Y W, YANG B. Open-set recognition using intra-class splitting [C]//27th European Signal Processing Conference (EUSIPCO). IEEE, 2019: 1–5. DOI: 10.23919/eusipco.2019.8902738
DOI URL |
29 |
SCHLACHTER P, LIAO Y W, YANG B. Deep open set recognition using dynamic intra-class splitting [J]. SN computer science, 2020, 1(2): 1–12. DOI: 10.1007/s42979-020-0086-9
DOI URL |
30 |
MIYATO T, MAEDA S I, KOYAMA M, et al. Virtual adversarial training: a regularization method for supervised and semi-supervised learning [J]. IEEE transactions on pattern analysis and machine intelligence, 2019, 41(8): 1979–1993. DOI: 10.1109/TPAMI.2018.2858821
DOI URL |
31 | KIM D, CHOI Y, KIM Y. Understanding and improving virtual adversarial training [EB/OL]. (2019-09-15)[2020-10-15]. |
32 |
SONG M K, WANG Z B, ZHANG Z F, et al. Analyzing user-level privacy attack against federated learning [J]. IEEE journal on selected areas in communications, 2020, 38(10): 2430–2444. DOI: 10.1109/JSAC.2020.3000372
DOI URL |
33 |
ZACK G W, ROGERS W E, LATT S A. Automatic measurement of sister chromatid exchange frequency [J]. The journal of histochemistry and cytochemistry, 1977, 25(7): 741–753. DOI: 10.1177/25.7.70454
DOI URL |
34 |
HUANG L, PAN W J, ZHANG Y, et al. Data augmentation for deep learning-based radio modulation classification [J]. IEEE access, 2019, 8: 1498–1506. DOI: 10.1109/ACCESS.2019.2960775
DOI URL |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||