ZTE Communications ›› 2021, Vol. 19 ›› Issue (4): 63-70.DOI: 10.12142/ZTECOM.202104007
收稿日期:
2021-10-09
出版日期:
2021-12-25
发布日期:
2022-01-04
MA Yiyan1, MA Guoyu1(), WANG Ning2, ZHONG Zhangdui1, AI Bo1,3()
Received:
2021-10-09
Online:
2021-12-25
Published:
2022-01-04
About author:
MA Yiyan received the B.S. degree in applied physics from Beijing Jiaotong University, China in 2019, and is currently working toward the Ph.D. degree at the State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University. His current research interests include the field of Internet of Things and massive machine type communications.|MA Guoyu (Supported by:
. [J]. ZTE Communications, 2021, 19(4): 63-70.
MA Yiyan, MA Guoyu, WANG Ning, ZHONG Zhangdui, AI Bo. OTFS Enabled NOMA for MMTC Systems over LEO Satellite[J]. ZTE Communications, 2021, 19(4): 63-70.
Figure 3 Resource allocation and data interleaving demonstration of orthogonal time frequency space (OTFS)-tandem spreading multiple access (TSMA) in Ref. [19]
1 | 3GPP. Solutions for NR to support non-terrestrial networks (NTN) (Release 16): TR 38.821 v16.0.0 [S]. 2019 |
2 |
SHEN X M S), CHENG N, ZHOU H B, et al. Air-space-ground integrated network technology: exploration and prospects [J]. Chinese journal on Internet of Things, 2020, 4(3): 3–19. DOI: 10.11959/j.issn.2096-3750.2020.00142
DOI |
3 |
LIBERG O, LÖWENMARK S E, EULER S, et al. Narrowband Internet of Things for non-terrestrial networks [J]. IEEE communications standards magazine, 2020, 4(4): 49–55. DOI: 10.1109/MCOMSTD.001.2000004
DOI |
4 |
YAN X J, AN K, LIANG T, et al. The application of power-domain non-orthogonal multiple access in satellite communication networks [J]. IEEE access, 2019, 7: 63531–63539. DOI: 10.1109/ACCESS.2019.2917060
DOI |
5 |
CHAE S H, JEONG C, LEE K. Cooperative communication for cognitive satellite networks [J]. IEEE transactions on communications, 2018, 66(11): 5140–5154. DOI: 10.1109/TCOMM.2018.2850813
DOI |
6 |
PEREZ-NEIRA A I, CAUS M, VAZQUEZ M A. Non-orthogonal transmission techniques for multibeam satellite systems [J]. IEEE communications magazine, 2019, 57(12): 58–63. DOI: 10.1109/MCOM.001.1900249
DOI |
7 |
CHU J H, CHEN X M, ZHONG C J, et al. Robust design for NOMA-based multibeam LEO satellite Internet of Things [J]. IEEE Internet of Things journal, 2021, 8(3): 1959–1970. DOI: 10.1109/JIOT.2020.3015995
DOI |
8 |
LIU X, ZHAI X B, LU W D, et al. QoS-guarantee resource allocation for multibeam satellite industrial Internet of Things with NOMA [J]. IEEE transactions on industrial informatics, 2021, 17(3): 2052–2061. DOI: 10.1109/TII.2019.2951728
DOI |
9 |
ALI I, AL-DHAHIR N, HERSHEY J E. Doppler characterization for LEO satellites [J]. IEEE transactions on communications, 1998, 46(3): 309–313. DOI: 10.1109/26.662636
DOI |
10 |
YOU M H, LEE S P, HAN Y. Adaptive compensation method using the prediction algorithm for the doppler frequency shift in the LEO mobile satellite communication system [J]. ETRI journal, 2000, 22(4): 32–39. DOI: 10.4218/etrij.00.0100.0404
DOI |
11 |
LIN J N, HOU Z W, ZHOU Y Q, et al. Map estimation based on Doppler characterization in broadband and mobile LEO satellite communications [C]//83rd Vehicular Technology Conference (VTC Spring). Nanjing, China: IEEE, 2016: 1–5. DOI: 10.1109/VTCSpring.2016.7504336
DOI |
12 |
LIU Y J, ZHU X, LIM E G, et al. High-robustness and low-complexity joint estimation of TOAs and CFOs for multiuser SIMO OFDM systems [J]. IEEE transactions on vehicular technology, 2018, 67(8): 7739–7743. DOI: 10.1109/TVT.2018.2821152
DOI |
13 |
TIAN D, ZHAO Y, TONG J F, et al. Frequency offset estimation for 5G based LEO satellite communication systems [C]//IEEE/CIC International Conference on Communications in China (ICCC). Changchun, China: IEEE, 2019: 647–652. DOI: 10.1109/ICCChina.2019.8855824
DOI |
14 |
PAN M G, HU J L, YUAN J H, et al. An efficient blind Doppler shift estimation and compensation method for LEO satellite communications [C]//20th International Conference on Communication Technology (ICCT). Nanning, China: IEEE, 2020: 643–648. DOI: 10.1109/ICCT50939.2020.9295821
DOI |
15 |
KODHELI O, ANDRENACCI S, MATURO N, et al. An uplink UE group-based scheduling technique for 5G mMTC systems over LEO satellite [J]. IEEE access, 2019, 7: 67413–67427. DOI: 10.1109/ACCESS.2019.2918581
DOI |
16 |
ZHANG Z J, LI Y, HUANG C W, et al. User activity detection and channel estimation for grant-free random access in LEO satellite-enabled Internet of Things [J]. IEEE Internet of Things journal, 2020, 7(9): 8811–8825. DOI: 10.1109/JIOT.2020.2997336
DOI |
17 |
DING Z G, SCHOBER R, FAN P Z, et al. OTFS-NOMA: an efficient approach for exploiting heterogenous user mobility profiles [J]. IEEE transactions on communications, 2019, 67(11): 7950–7965. DOI: 10.1109/TCOMM.2019.2932934
DOI |
18 |
DEKA K, THOMAS A, SHARMA S. OTFS-SCMA: A code-domain NOMA approach for orthogonal time frequency space modulation [J]. IEEE transactions on communications, 2021, 69(8): 5043–5058. DOI: 10.1109/TCOMM.2021.3075237
DOI |
19 |
MA Y Y, MA G Y, WANG N, et al. OTFS-TSMA for massive Internet of Things in high-speed railway [J]. IEEE transactions on wireless communications, Early access, 2021. DOI: 10.1109/TWC.2021.3098033
DOI |
20 |
HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]//Wireless Communications and Networking Conference (WCNC). San Francisco, USA: IEEE, 2017: 1–6. DOI: 10.1109/WCNC.2017.7925924
DOI |
21 |
RAVITEJA P, PHAN K T, HONG Y, et al. Interference cancellation and iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2018, 17(10): 6501–6515. DOI: 10.1109/TWC.2018.2860011
DOI |
22 |
WEI Z, YUAN W, LI S, et al. Orthogonal time-frequency space modulation: a promising next generation waveform [J]. IEEE wireless communications. 2021, 28(4): 136–144. DOI: 10.1109/MWC.001.2000408
DOI |
23 |
YUAN W, WEI Z, YUAN J, et al. A simple variational bayes detector for orthogonal time frequency space (OTFS) modulation [J]. IEEE transactions on vehicular technology, 2020, 69(7): 7976–7980. DOI: 10.1109/TVT.2020.2991443
DOI |
24 |
LI S, YUAN W, WEI Z, et al. Cross domain iterative detection for orthogonal time frequency space modulation [J]. IEEE transactions on wireless communications, 2021, early access. DOI: 10.1109/TWC.2021.3110125
DOI |
25 |
LI S, YUAN W, WEI Z, et al. Hybrid MAP and PIC detection for OTFS modulation [J]. IEEE transactions on vehicular technology, 2021, 70(7): 7193–7198. DOI: 10.1109/TVT.2021.3083181
DOI |
26 |
WEI Z, YUAN W, LI S, et al. Transmitter and receiver window designs for orthogonal time-frequency space modulation [J]. IEEE transactions on communications, 2021, 69(4): 2207–2223. DOI: 10.1109/TCOMM.2021.3051386
DOI |
27 |
LI S, YUAN J, YUAN W, et al. Performance analysis of coded OTFS systems over high-mobility channels [J]. IEEE transactions on wireless communications, 2021, 20(9): 6033–6048. DOI: 10.1109/TWC.2021.3071493
DOI |
28 | WANG F G, MA G Y. Massive machine type communications: multiple access schemes [M]. Heidelberg, Germany: Springer, 2019 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||