1 |
ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. DOI: 10.1109/jproc.2019.2918951
DOI
|
2 |
ZHU G, LIU D Z, DU Y Q, et al. Towards an intelligent edge: wireless communication meets machine learning [EB/OL]. (2018⁃09⁃02)[2019⁃12⁃05].
|
3 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication⁃efficient learning of deep networks from decentralized data [C]//20th International Conference on Artificial Intelligence and Statistics. Fort Lauderdale, USA, 2017: 1273–1282.
|
4 |
ETSI. Mobile edge computing⁃introductory technical white paper [R]. 2014
|
5 |
ZHU G X, WANG Y, HUANG K B. Broadband analog aggregation for low⁃latency federated edge learning (extended version) [EB/OL]. (2018⁃10⁃30)[2019⁃01⁃16].
|
6 |
NISHIO T, YONETANI R. Client selection for federated learning with heterogeneous resources in mobile edge [C]//IEEE International Conference on Communications (ICC). Shanghai, China, 2019: 18852422. DOI: 10.1109/icc.2019.8761315
DOI
|
7 |
ZENG Q S, DU Y Q, LEUNG K K, et al. Energy⁃efficient radio resource allocation for federated edge learning [EB/OL]. (2019⁃07⁃13)[2019⁃12⁃20].
|
8 |
YANG Z H, CHEN M Z, SAAD W, et al. Energy efficient federated learning over wireless communication networks [EB/OL]. (2019⁃11⁃06)[2019⁃12⁃10].
|
9 |
YANG H H, LIU Z Z, QUEK T Q S, et al. Scheduling policies for federated learning in wireless networks [J]. IEEE transactions on communications, 2020, 68(1): 317–333. DOI: 10.1109/tcomm.2019.2944169
DOI
|
10 |
YANG H H, ARAFA A, QUEK T Q S, et al. Age⁃based scheduling policy for federated learning in mobile edge networks [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain, 2020. DOI: 10.1109/icassp40776.2020.9053740
DOI
|
11 |
CHEN M Z, YANG Z H, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks [EB/OL]. (2019⁃09⁃17)[2020⁃01⁃10].
|
12 |
CHEN M Z, POOR H V, SAAD W, et al. Convergence time optimization for federated learning over wireless networks [EB/OL]. (2020⁃01⁃22)[2020⁃03⁃25].
|
13 |
KATHAROPOULOS A, FLEURET F. Not all samples are created equal: deep learning with importance sampling [EB/OL]. (2018⁃03⁃02)[2019⁃10⁃28].
|
14 |
LIU D Z, ZHU G X, ZHANG J, et al. Wireless data acquisition for edge learning: data⁃importance aware retransmission [EB/OL]. (2018⁃10⁃05)[2019⁃03⁃19].
|
15 |
LIU D Z, ZHU G X, ZHANG J, et al. Data⁃importance aware user scheduling for communication⁃efficient edge machine learning [EB/OL]. (2019⁃03⁃19)[2019⁃10⁃05].
|
16 |
ETSI. LTE; evolved universal terrestrial radio access (E-UTRA); physical channels and modulation (3GPP TS 36.211 version 15.6.0 release 15): ETSI TS 136 211 V15.6.0 [S]. ETSI, 2019
|
17 |
LIN Y J, HAN S, MAO H Z, et al. Deep gradient compression: reducing the communication bandwidth for distributed training [EB/OL]. (2017⁃10⁃05)[2018⁃02⁃ 05].
|
18 |
REN J K, YU G D, CAI Y L, et al. Latency optimization for resource allocation in mobile⁃edge computation offloading [J]. IEEE transactions on wireless communications, 2018, 17(8): 5506–5519. DOI: 10.1109/twc.2018.2845360
DOI
|
19 |
CHEN T Y, GIANNAKIS G B, SUN T, et al. LAG: lazily aggregated gradient for communication⁃efficient distributed learning [EB/OL]. (2018⁃05⁃25)[2019⁃12⁃02].
|
20 |
REN J K, YU G D, and DING G Y. Accelerating DNN training in wireless federated edge learning system [EB/OL]. (2019⁃05⁃23)[2020⁃03⁃28].
|