1 |
YUAN Y F, ZHAO X W. 5G: vision, scenarios and enabling technologies [J]. ZTE communications, 2015, 13(1): 3–10. DOI: 10.3969/j.issn.1673.5188.2015.01.001
DOI
|
2 |
MARCHETTI N. Towards 5th generation wireless communication systems [J]. ZTE communications, 2015, 13(1): 11-19. DOI: 10.3969/j.issn.1673.5188.2015.01.002
DOI
|
3 |
LUO F L. Signal processing techniques for 5G: an overview [J]. ZTE communications, 2015, 13(1): 20–27. DOI: 10.3969/j.issn.1673.5188.2015.01.003
DOI
|
4 |
HAN S F, C⁃L and XU Z K I. Energy⁃efficient large⁃scale antenna systems with hybrid digital⁃analog beamforming structure [J]. ZTE communications, 2015, 13(1): 28-34. DOI: 10.3969/j.issn.1673.5188.2015.01.004
DOI
|
5 |
WONG V W.S, SCHOBER R. Key technologies for 5G wireless systems [M]. Cambridge, England: Cambridge University Press, 2017: 15–64
|
6 |
MACCARTNEY G R, RAPPAPORT T S, SAMIMI M K, et al. Millimeter⁃wave omnidirectional path loss data for small cell 5G channel modeling [J]. IEEE access, 2015, 3: 1573-1580. DOI: 10.1109/access.2015.2465848
DOI
|
7 |
SAMIMI M K, RAPPAPORT T S. 3⁃D millimeter⁃wave statistical channel model for 5G wireless system design [J]. IEEE transactions on microwave theory and techniques, 2016, 64(7): 2207-2225. DOI: 10.1109/tmtt.2016.2574851
DOI
|
8 |
MACCARTNEY G R, RAPPAPORT T S, SUN S, et al. Indoor office wideband millimeter⁃wave propagation measurements and channel models at 28 and 73 GHz for ultra⁃dense 5G wireless networks [J]. IEEE access, 2015, 3: 2388-2424. DOI: 10.1109/access.2015.2486778
DOI
|
9 |
ISHIMARU A. Electromagnetic wave propagation, radiation, and scattering [M]. Hoboken, USA:John Wiley & Sons, 2017. DOI: 10.1002/9781119079699
DOI
|
10 |
GONG S H, GAO Y F, SHI H B, et al. A practical MGA⁃ARIMA model for forecasting real⁃time dynamic rain⁃induced attenuation [J]. Radio science, 2013, 48(3): 208-225. DOI: 10.1002/rds.20028
DOI
|
11 |
GONG S H, WEI D X, XUE X W, et al. Study on the channel model and BER performance of single⁃polarization satellite⁃earth MIMO communication systems at Ka band [J]. IEEE transactions on antennas and propagation, 2014, 62(10): 5282-5297. DOI: 10.1109/tap.2014.2342754
DOI
|
12 |
XU X L, LIU M, XIONG J B, et al. Key technology and application of millimeter wave communications for 5G: a survey [J]. Cluster computing, 2019, 22(S5): 12997-13009. DOI: 10.1007/s10586-018-1831-x
DOI
|
13 |
NIU Y, LI Y, JIN D P, et al. A survey of millimeter wave communications (mmwave) for 5G: opportunities and challenges [J]. Wireless networks, 2015, 21(8): 2657-2676. DOI: 10.1007/s11276-015-0942-z
DOI
|
14 |
ICHKOV A, ATANASOVSKI V, GAVRILOVSKA L. Potentials for application of millimeter wave communications in cellular networks [J]. Wireless personal communications, 2017, 92(1): 279-295. DOI: 10.1007/s11277-016-3850-3
DOI
|
15 |
ZHOU L, XIAO L M, YANG Z, et al. Path loss model based on cluster at 28 GHz in the indoor and outdoor environments [J]. Science china information sciences, 2017, 60(8): 080302. DOI: 10.1007/s11432-017-9127-6
DOI
|
16 |
JAECKEL S, RASCHKOWSKI L, WU S B, et al. An explicit ground reflection model for mm⁃wave channels [C]//IEEE Wireless Communications and Networking Conference Workshops (WCNCW). San Francisco, USA: IEEE, 2017: 19-22. DOI: 10.1109/wcncw.2017.7919093
DOI
|
17 |
RAPPAPORT T S, SUN S, SHAFI M. 5G Channel model with improved accuracy and efficiency in mmwave bands [J]. IEEE 5G tech focus, 2017, 1(1): 1-6
|
18 |
ZHAO X W, LI S, WANG Q, et al. Channel measurements, modeling, simulation and validation at 32 GHz in outdoor microcells for 5G radio systems [J]. IEEE access, 2017, 5: 1062-1072. DOI: 10.1109/access.2017.2650261
DOI
|
19 |
RAPPAPORT T S, SUN S, SHAFI M. Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications [C]//IEEE 86th Vehicular Technology Conference (VTC⁃Fall). Toronto, Canada: IEEE, 2017: 24-27. DOI: 10.1109/vtcfall.2017.8287877
DOI
|
20 |
ZHANG X, ZHAO Z W, LIN L K, et al. Rain attenuation characterization on 5G millimeter wave links with short distance [J]. Chinese journal of radio science, 2017, 32(5): 507-512, 2017.
|
|
DOI: 10.13443/j.cjors.2017091901
|
21 |
GARCIA⁃RUBIA J M, RIERA J M, BENARROCH A, et al. Estimation of rain attenuation from experimental drop size distributions [J]. IEEE antennas and wireless propagation letters, 2011, 10: 839-842. DOI: 10.1109/lawp.2011.2163609
DOI
|
22 |
BLEVIS B. Losses due to rain on radomes and antenna reflecting surfaces [J]. IEEE transactions on antennas and propagation, 1965, 13(1): 175-176. DOI: 10.1109/tap.1965.1138384
DOI
|
23 |
KHARADLY M M Z, ROSS R. Effect of wet antenna attenuation on propagation data statistics [J]. IEEE transactions on antennas and propagation, 2001, 49(8): 1183-1191. DOI: 10.1109/8.943313
DOI
|
24 |
GONG S H, HUANG J Y, ZHAO X L. Rain⁃induced effects on the envelope probability density functions in multipath channels [J]. Radio science, 2008, 43(2): 1-11. DOI: 10.1029/2007rs003759
DOI
|