1 |
MATTHAIOU M, YURDUSEVEN O, NGO H Q, et al. The road to 6G: ten physical layer challenges for communications engineers [J]. IEEE communications magazine, 2021, 59(1): 64–69. DOI: 10.1109/MCOM.001.2000208
|
2 |
YANG H H, CAO X Y, YANG F, et al. A programmable metasurface with dynamic polarization, scattering and focusing control [J]. Scientific reports, 2016, 6: 35692. DOI: 10.1038/srep35692
|
3 |
ZHANG S W, ZHANG R. Capacity characterization for intelligent reflecting surface aided MIMO communication [J]. IEEE journal on selected areas in communications, 2020, 38(8): 1823–1838. DOI: 10.1109/JSAC.2020.3000814
|
4 |
DI RENZO M, ZAPPONE A, DEBBAH M, et al. Smart radio environments empowered by reconfigurable intelligent surfaces: how it works, state of research, and the road ahead [J]. IEEE journal on selected areas in communications, 2020, 38(11): 2450–2525. DOI: 10.1109/JSAC.2020.3007211
|
5 |
HUANG C, ZAPPONE A, ALEXANDROPOULOS G C, et al. Reconfigurable intelligent surfaces for energy efficiency in wireless communication [EB/OL]. (2018-10-06) [2019-01-10].
|
6 |
WU Q Q, ZHANG R. Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming [J]. IEEE transactions on wireless communications, 2019, 18(11): 5394–5409. DOI: 10.1109/TWC.2019.2936025
|
7 |
HAN Y, TANG W K, JIN S, et al. Large intelligent surface-assisted wireless communication exploiting statistical CSI [J]. IEEE transactions on vehicular technology, 2019, 68(8): 8238–8242. DOI: 10.1109/TVT.2019.2923997
|
8 |
TANG W K, CHEN M Z, CHEN X Y, et al. Wireless communications with reconfigurable intelligent surface: path loss modeling and experimental measurement [J]. IEEE transactions on wireless communications, 2021, 20(1): 421–439. DOI: 10.1109/TWC.2020.3024887
|
9 |
CHEN W C, WEN C-K, LI X, et al. Channel customization for limited feedback in RIS-assisted FDD systems [J]. IEEE transactions on wireless communications, 2023, 22(7): 4505–4519. DOI: 10.1109/TWC.2022.3226442
|
10 |
MU X D, LIU Y W, GUO L, et al. Simultaneously transmitting and reflecting (STAR) RIS aided wireless communications [J]. IEEE transactions on wireless communications, 2022, 21(5): 3083–3098. DOI: 10.1109/TWC.2021.3118225
|
11 |
WEI L, HUANG C W, ALEXANDROPOULOS G C, et al. Channel estimation for RIS-empowered multi-user MISO wireless communications [J]. IEEE transactions on communications, 2021, 69(6): 4144–4157. DOI: 10.1109/TCOMM.2021.3063236
|
12 |
LIU C, LIU X M, NG D W K, et al. Deep residual learning for channel estimation in intelligent reflecting surface-assisted multi-user communications [J]. IEEE transactions on wireless communications, 2022, 21(2): 898–912. DOI: 10.1109/TWC.2021.3100148
|
13 |
WEI L, HUANG C W, GUO Q H, et al. Joint channel estimation and signal recovery for RIS-empowered multiuser communications [J]. IEEE transactions on communications, 2022, 70(7): 4640–4655. DOI: 10.1109/TCOMM.2022.3179771
|
14 |
JIN Y, ZHANG J Y, ZHANG X D, et al. Channel estimation for semi-passive reconfigurable intelligent surfaces with enhanced deep residual networks [J]. IEEE transactions on vehicular technology, 2021, 70(10): 11083–11088. DOI: 10.1109/TVT.2021.3109937
|
15 |
HU J F, YIN H F, BJÖRNSON E. MmWave MIMO communication with semi-passive RIS: a low-complexity channel estimation scheme [C]//Proc. IEEE Global Communications Conference (GLOBECOM). IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM46510.2021.9685434
|
16 |
LI M Y, ZHANG S, GE Y, et al. Joint channel estimation and data detection for hybrid RIS aided millimeter wave OTFS systems [J]. IEEE transactions on communications, 2022, 70(10): 6832–6848. DOI: 10.1109/TCOMM.2022.3199019
|
17 |
ALEXANDROPOULOS G C, VLACHOS E. A hardware architecture for reconfigurable intelligent surfaces with minimal active elements for explicit channel estimation [C]//Proc. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020: 9175–9179. DOI: 10.1109/ICASSP40776.2020.9053976
|
18 |
ZHANG H Y, SHLEZINGER N, ALAMZADEH I, et al. Channel estimation with simultaneous reflecting and sensing reconfigurable intelligent metasurfaces [C]//Proc. IEEE 22nd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC). IEEE, 2021: 536–540. DOI: 10.1109/SPAWC51858.2021.9593172
|
19 |
SCHROEDER R, HE J G, BRANTE G, et al. Two-stage channel estimation for hybrid RIS assisted MIMO systems [J]. IEEE transactions on communications, 2022, 70(7): 4793–4806. DOI: 10.1109/TCOMM.2022.3176654
|
20 |
TAHA A, ALRABEIAH M, ALKHATEEB A. Enabling large intelligent surfaces with compressive sensing and deep learning [J]. IEEE access, 2021, 9: 44304–44321. DOI: 10.1109/ACCESS.2021.3064073
|
21 |
YANG S J, LYU W T, WANG D L, et al. Separate channel estimation with hybrid RIS-aided multi-user communications [J]. IEEE transactions on vehicular technology, 2023, 72(1): 1318–1324. DOI: 10.1109/TVT.2022.3205370
|
22 |
HEATH R W, GONZÁLEZ-PRELCIC N, RANGAN S, et al. An overview of signal processing techniques for millimeter wave MIMO systems [J]. IEEE journal of selected topics in signal processing, 2016, 10(3): 436–453. DOI: 10.1109/JSTSP.2016.2523924
|
23 |
FANG J, LI X J, LI H B, et al. Low-rank covariance-assisted downlink training and channel estimation for FDD massive MIMO systems [J]. IEEE transactions on wireless communications, 2017, 16(3): 1935–1947. DOI: 10.1109/TWC.2017.2657513
|
24 |
HAN Y, HSU T H, WEN C K, et al. Efficient downlink channel reconstruction for FDD transmission systems [C]//Proc. 27th Wireless and Optical Communication Conference (WOCC). IEEE, 2018: 1–5. DOI: 10.1109/WOCC.2018.8372727
|
25 |
HAN Y, HSU T H, WEN C K, et al. Efficient downlink channel reconstruction for FDD multi-antenna systems [J]. IEEE transactions on wireless communications, 2019, 18(6): 3161–3176. DOI: 10.1109/TWC.2019.2911497
|
26 |
HAN Y, LIU Q, WEN C-K, et al. Tracking FDD massive MIMO downlink channels by exploiting delay and angular reciprocity [J]. IEEE journal of selected topics in signal processing, 2019, 13(5): 1062–1076. DOI: 10.1109/JSTSP.2019.2935320
|
27 |
SELVAN K T, JANASWAMY R. Fraunhofer and Fresnel distances: unified derivation for aperture antennas [J]. IEEE antennas and propagation magazine, 2017, 59(4): 12–15. DOI: 10.1109/MAP.2017.2706648
|
28 |
SHI X, WANG J, SUN Z, et al. Spatial-chirp codebook-based hierarchical beam training for extremely large-scale massive MIMO [EB/OL]. (2022-10-07) [2023-08-15].
|
29 |
SOUTHWELL W H. Validity of the Fresnel approximation in the near field [J]. Journal of the optical society of America, 1981, 71(1): 7. DOI: 10.1364/josa.71.000007
|
30 |
CUI M Y, DAI L L. Channel estimation for extremely large-scale MIMO: far-field or near-field? [J]. IEEE transactions on communications, 2022, 70(4): 2663–2677. DOI: 10.1109/TCOMM.2022.3146400
|
31 |
YANG J, ZENG Y, JIN S, et al. Communication and localization with extremely large lens antenna array [J]. IEEE transactions on wireless communications, 2021, 20(5): 3031–3048. DOI: 10.1109/TWC.2020.3046766
|
32 |
LU Z Z, HAN Y, JIN S, et al. Near-field channel reconstruction and user localization for ELAA systems [C]//Proc. International Symposium on Wireless Communication Systems (ISWCS). IEEE, 2022: 1–6. DOI: 10.1109/ISWCS56560.2022.9940362
|
33 |
MAMANDIPOOR B, RAMASAMY D, MADHOW U. Newtonized orthogonal matching pursuit: frequency estimation over the continuum [J]. IEEE transactions on signal processing, 2016, 64(19): 5066–5081. DOI: 10.1109/TSP.2016.2580523
|
34 |
OZTURK C, KESKIN M F, WYMEERSCH H, et al. RIS-aided near-field localization under phase-dependent amplitude variations [J]. IEEE transactions on wireless communications, 2023, 22(8): 5550–5566. DOI: 10.1109/TWC.2023.3235306
|
35 |
FENG K M, LI X, HAN Y, et al. Joint beamforming optimization for reconfigurable intelligent surface-enabled MISO-OFDM systems [J]. China communications, 2021, 18(3): 63–79. DOI: 10.23919/JCC.2021.03.006
|
36 |
LU Z, HAN Y, JIN S, et al. Near-filed localization and channel estimation for ELAA systems [J]. IEEE transactions on wireless communications, 2023, Early Access. DOI: 10.1109/TWC.2023.3336328
|