1 |
YANG B LIANG X, LIU S N, et al. Intelligent 6G wireless network with multi-dimensional information perception [J]. ZTE communications, 2023, 21( 2): 3– 10. DOI: 10.12142/ZTECOM.202302002
|
2 |
CHEN Z R, ZHANG Z Y, YANG Z H. Big AI models for 6G wireless networks: opportunities, challenges, and research directions [J]. IEEE wireless communications, 2024, 31( 5): 164– 172. DOI: 10.1109/MWC.015.2300404
|
3 |
HE S W, DONG H L, PENG S L, et al. Challenges and methods of constructing a verification system for endogenous intelligent communication in wireless networks [J]. Mobile communications, 2024, 48( 7): 2– 14. DOI: 10.3969/j.issn.1006-1010.20240629-0001
|
4 |
GAO Y CHEN J J, LI D P. Intelligence driven wireless networks in B5G and 6G era: a survey [J]. ZTE communications, 2024, 22( 3): 99– 105. DOI: 10.12142/ZTECOM.202403012
|
5 |
AGIWAL M, ROY A, SAXENA N. Next generation 5G wireless networks: a comprehensive survey [J]. IEEE communications surveys and tutorials, 2016, 18( 3): 1617– 1655. DOI: 10.1109/COMST.2016.2532458
|
6 |
ZAIDI Z, FRIDERIKOS V, YOUSAF Z, et al. Will SDN be part of 5G? [J]. IEEE communications surveys and tutorials, 20( 4): 3220– 3258. DOI: 10.1109/comst.2018.2836315
|
7 |
LUONG D H, THIEU H T, OUTTAGARTS A, et al. Cloudification and autoscaling orchestration for container-based mobile networks toward 5G: experimentation, challenges and perspectives [C]//Proc. IEEE 87th Vehicular Technology Conference (VTC Spring). IEEE, 2018: 1– 7. DOI: 10.1109/VTCSpring.2018.8417602
|
8 |
QUAN Q. Intelligent and autonomous management in cloud-native future networks: a survey on related standards from an architectural perspective [J]. Future Internet, 2021, 13( 2), 42. DOI: 10.3390/fi13020042
|
9 |
HE S W. An endogenous intelligent architecture for wireless communication networks [J]. Wireless networks, 2024, 30( 2): 1069– 1084. DOI: 10.1007/s11276-023-03545-9
|
10 |
3GPP. Technical specification group services and system aspects; achitecture enhancements for 5G system (5GS) to support network data analytics services: TS 23.288 [S]. 2023
|
11 |
LEE J, SOLAT F, KIM T Y, et al. Federated learning-empowered mobile network management for 5G and beyond networks: from access to core [J]. IEEE communications surveys and tutorials, 2024, 26( 3): 2176– 2212. DOI: 10.1109/COMST.2024.3352910
|
12 |
SAAD W, BENNIS M, CHEN M Z. A vision of 6G wireless systems: applications, trends, technologies, and open research problems [J]. IEEE network, 2020, 34( 3): 134– 142. DOI: 10.1109/MNET.001.1900287
|
13 |
GKONIS P K, NOMIKOS N, TRAKADAS P, et al. Leveraging network data analytics function and machine learning for data collection, resource optimization, security and privacy in 6G networks [J]. IEEE access, 2024, 12: 21320– 21336. DOI: 10.1109/ACCESS.2024.3359992
|
14 |
WU W, ZHOU C H, LI M S, et al. AI-native network slicing for 6G networks [J]. IEEE wireless communications, 29( 1): 96– 103. DOI: 10.1109/mwc.001.2100338
|
15 |
MEKRACHE A, BOUTIBA K, KSENTINI A. Combining network data analytics function and machine learning for abnormal traffic detection in beyond 5G [C]//Proc. IEEE Global Communications Conference. IEEE, 2023: 1204– 1209. DOI: 10.1109/GLOBECOM54140.2023.10436766
|
16 |
NISHA L K, KUMAR R. A smart data analytics system generating for 5G N/W system via ML based algorithms for the better communications [C]// Proc. 1st International Conference on Innovative Sustainable Technologies for Energy, Mechatronics, and Smart Systems (ISTEMS). IEEE, 2024: 1– 6. DOI: 10.1109/ISTEMS60181.2024.10560068
|
17 |
SEVGICAN S, TURAN M, GÖKARSLAN K, et al. Intelligent network data analytics function in 5G cellular networks using machine learning [J]. Journal of communications and networks, 2020, 22( 3): 269– 280. DOI: 10.1109/JCN.2020.000019
|
18 |
MANIAS D M, CHOUMAN A, SHAMI A. An NWDAF approach to 5G core network signaling traffic: analysis and characterization [C]//Proc. IEEE Global Communications Conference. IEEE, 2022: 6001– 6006. DOI: 10.1109/GLOBECOM48099.2022.10000989
|
19 |
ZHANG C J, SHAN G Y, ROH B H. Fair federated learning for multi-task 6G NWDAF network anomaly detection [EB/OL]. ( 2024-09-25)[ 2024-10-09].
|
20 |
SANTOS G L, ENDO P T, SADOK D, et al. When 5G meets deep learning: a systematic review [J]. Algorithms, 2020, 13( 9): 208. DOI: 10.3390/a13090208
|
21 |
TEZERGIL B, ONUR E. Wireless backhaul in 5G and beyond: issues, challenges and opportunities [J]. IEEE communications surveys and tutorials, 2022, 24( 4): 2579– 2632. DOI: 10.1109/COMST.2022.3203578
|
22 |
LY A, YAO Y D. A review of deep learning in 5G research: channel coding, massive MIMO, multiple access, resource allocation, and network security [J]. IEEE open journal of the communications society, 2021, 2: 396– 408. DOI: 10.1109/OJCOMS.2021.3058353
|