| 1 |
WANG C M, HE Y, YU F R, et al. Integration of networking, caching, and computing in wireless systems: a survey, some research issues, and challenges [J]. IEEE communications surveys & tutorials, 2018, 20(1): 7–38. DOI: 10.1109/COMST.2017.2758763
DOI
|
| 2 |
NDIKUMANA A, TRAN N H, HO T M, et al. Joint communication, computation, caching, and control in big data multi-access edge computing [J]. IEEE transactions on mobile computing, 2020, 19(6): 1359–1374. DOI: 10.1109/TMC.2019.2908403
DOI
|
| 3 |
PASCHOS G S, IOSIFIDIS G, TAO M X, et al. The role of caching in future communication systems and networks [J]. IEEE journal on selected areas in communications, 2018, 36(6): 1111–1125. DOI: 10.1109/JSAC.2018.2844939
DOI
|
| 4 |
WEI Y F, YU F R, SONG M, et al. Joint optimization of caching, computing, and radio resources for fog-enabled IoT using natural actor-critic deep reinforcement learning [J]. IEEE Internet of Things journal, 2019, 6(2): 2061–2073. DOI: 10.1109/JIOT.2018.2878435
DOI
|
| 5 |
AHMED M, TRAVERSO S, GIACCONE P, et al. Analyzing the performance of LRU caches under non-stationary traffic patterns [EB/OL]. (2013-01-21)[2023-03-01].
|
| 6 |
JALEEL A, THEOBALD K B, STEELY S C, et al. High performance cache replacement using re-reference interval prediction (RRIP) [C]//37th annual international symposium on computer architecture. ACM, 2010: 60–71. DOI: 10.1145/1815961.1815971
DOI
|
| 7 |
LI L X, XU Y, YIN J Y, et al. Deep reinforcement learning approaches for content caching in cache-enabled D2D networks [J]. IEEE Internet of Things journal, 2020, 7(1): 544–557. DOI: 10.1109/JIOT.2019.2951509
DOI
|
| 8 |
WON D U, KIM H S. A prediction scheme for movie preference rating based on DeepFM model [C]//International Conference on Information Networking (ICOIN). IEEE, 2022: 385–390. DOI: 10.1109/ICOIN53446.2022.9687136
DOI
|
| 9 |
LI D Y, ZHANG H X, DING H, et al. User preference learning-based proactive edge caching for D2D-assisted wireless networks [J]. IEEE Internet of Things journal, 2023, early access. DOI: 10.1109/JIOT.2023.3244621
DOI
|
| 10 |
JIANG Y X, FENG H J, ZHENG F C, et al. Deep learning-based edge caching in fog radio access networks [J]. IEEE transactions on wireless communications, 2020, 19(12): 8442–8454. DOI: 10.1109/TWC.2020.3022907
DOI
|
| 11 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL]. (2016-02-17)[2023-03-01].
|
| 12 |
SHI Y M, YANG K, JIANG T, et al. Communication-efficient edge AI: algorithms and systems [J]. IEEE communications surveys & tutorials, 2020, 22(4): 2167–2191. DOI: 10.1109/COMST.2020.3007787
DOI
|
| 13 |
KHAN L U, PANDEY S R, TRAN N H, et al. Federated learning for edge networks: resource optimization and incentive mechanism [J]. IEEE communications magazine, 2020, 58(10): 88–93. DOI: 10.1109/MCOM.001.1900649
DOI
|
| 14 |
LIM W Y B, LUONG N C, HOANG D T, et al. Federated learning in mobile edge networks: a comprehensive survey [J]. IEEE communications surveys & tutorials, 2020, 22(3): 2031–2063. DOI: 10.1109/COMST.2020.2986024
DOI
|
| 15 |
FAROOQ M S, TEHSEEN R, QURESHI J N, et al. FFM: flood forecasting model using federated learning [J]. IEEE access, 2023, 11: 24472–24483. DOI: 10.1109/ACCESS.2023.3252896
DOI
|
| 16 |
WANG K L, DENG N, LI X H. An efficient content popularity prediction of privacy preserving based on federated learning and Wasserstein GAN [J]. IEEE Internet of Things journal, 2023, 10(5): 3786–3798. DOI: 10.1109/JIOT.2022.3176360
DOI
|
| 17 |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory [J]. Neural computation, 1997, 9(8): 1735–1780. DOI: 10.1162/neco.1997.9.8.1735
DOI
|
| 18 |
DOAN K N, VAN NGUYEN T, QUEK T Q S, et al. Content-aware proactive caching for backhaul offloading in cellular network [J]. IEEE transactions on wireless communications, 2018, 17(5): 3128–3140. DOI: 10.1109/TWC.2018.2806971
DOI
|
| 19 |
HARPER F M, KONSTAN J A. The MovieLens datasets [J]. ACM transactions on interactive intelligent systems, 2016, 5(4): 1–19. DOI: 10.1145/2827872
DOI
|
| 20 |
GUO J Q, HE H W, SUN C. ARIMA-based road gradient and vehicle velocity prediction for hybrid electric vehicle energy management [J]. IEEE transactions on vehicular technology, 2019, 68(6): 5309–5320. DOI: 10.1109/TVT.2019.2912893
DOI
|