| 1 |
LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO: benefits and challenges [J]. IEEE journal of selected topics in signal processing, 2014, 8(5): 742–758. DOI: 10.1109/JSTSP.2014.2317671
DOI
|
| 2 |
MARZETTA T L. Massive MIMO: an introduction [J]. Bell labs technical journal, 2015, 20: 11–22. DOI: 10.15325/BLTJ.2015.2407793
DOI
|
| 3 |
WU H Q. Ten reflections on 5G [J]. ZTE technology journal, 2020, 26(1): 2–4. DOI: 10.12142/ZTECOM.202001001
DOI
|
| 4 |
FANG M, DUAN X Y, HU L J. Challenges, innovations and perspectives towards 6G [J]. ZTE technology journal, 2020, 26(3): 61–70. DOI: 10.12142/ ZTETJ.202003012
DOI
|
| 5 |
WANG X Y. 5G: striving for sustainable growth amid expectations [J]. ZTE technology journal, 2020, 26(1): 64–66. DOI: 10.12142/ZTETJ.202001014
DOI
|
| 6 |
GAO Z, DAI L L, WANG Z C, et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO [J]. IEEE transactions on signal processing, 2015, 63(23): 6169–6183. DOI: 10.1109/TSP.2015.2463260
DOI
|
| 7 |
KUO P H, KUNG H T, TING P G. Compressive sensing based channel feedback protocols for spatially-correlated massive antenna arrays [C]//Proceedings of 2012 IEEE Wireless Communications and Networking Conference. IEEE, 2012: 492–497. DOI: 10.1109/WCNC.2012.6214417
DOI
|
| 8 |
LU L, LI G Y, QIAO D L, et al. Sparsity-enhancing basis for compressive sensing based channel feedback in massive MIMO systems [C]//Proceedings of 2015 IEEE Global Communications Conference. IEEE, 2015: 1–6. DOI: 10.1109/GLOCOM.2015.7417036
DOI
|
| 9 |
DAUBECHIES I, DEFRISE M, DE MOL C. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint [J]. Communications on pure and applied mathematics, 2004, 57(11): 1413–1457. DOI: 10.1002/cpa.20042
DOI
|
| 10 |
KONG Q L, GONG R, LIU J T, et al. Investigation on reconstruction for frequency domain photoacoustic imaging via TVAL3 regularization algorithm [J]. IEEE photonics journal, 2018, 10(5): 1–15. DOI: 10.1109/JPHOT.2018.2869815
DOI
|
| 11 |
METZLER C A, MALEKI A, BARANIUK R G. From denoising to compressed sensing [J]. IEEE transactions on information theory, 2016, 62(9): 5117–5144. DOI: 10.1109/TIT.2016.2556683
DOI
|
| 12 |
GAO Z, YAN S, ZHANG J, et al. ANN-based multi-channel QoT-prediction over a 563.4 km field-trial testbed [J]. Journal of lightwave technology, 2020, 38 (9): 2646–2655
|
| 13 |
GAO Z G, ZHANG J W, YAN S Y, et al. Deep reinforcement learning for BBU placement and routing in C-RAN [C]//Proceedings of Optical Fiber Communication Conference (OFC). OSA, 2019: 1–3. DOI: 10.1364/ofc.2019.w2a.22
DOI
|
| 14 |
WEN C K, SHIH W T, JIN S. Deep learning for massive MIMO CSI feedback [J]. IEEE wireless communications letters, 2018, 7(5): 748–751. DOI: 10.1109/LWC.2018.2818160
DOI
|
| 15 |
WANG T Q, WEN C K, JIN S, et al. Deep learning-based CSI feedback approach for time-varying massive MIMO channels [J]. IEEE wireless communications letters, 2019, 8(2): 416–419. DOI: 10.1109/LWC.2018.2874264
DOI
|
| 16 |
LIU F, HE X C, LI C G, et al. CsiNet-plus model with truncation and noise on CSI feedback [J]. IEICE transactions on fundamentals of electronics, communications and computer sciences, 2020, E103.A(1): 376–381. DOI: 10.1587/transfun.2019eal2123
DOI
|
| 17 |
LU Z L, WANG J T, SONG J. Multi-resolution CSI feedback with deep learning in massive MIMO system [C]//Proceedings of ICC 2020–2020 IEEE International Conference on Communications. IEEE, 2020: 1–6. DOI: 10.1109/ICC40277.2020.9149229
DOI
|
| 18 |
LU Z L, ZHANG X D, HE H Y, et al. Binarized aggregated network with quantization: flexible deep learning deployment for CSI feedback in massive MIMO system [EB/OL]. [2021-10-01]. . DOI: 10.1109/TWC.2022.3141653
DOI
URL
|
| 19 |
LIU L F, OESTGES C, POUTANEN J, et al. The COST 2100 MIMO channel model [J]. IEEE wireless communications, 2012, 19(6): 92–99. DOI: 10.1109/mwc.2012.6393523
DOI
|
| 20 |
STUBER G L, BARRY J R, MCLAUGHLIN S W, et al. Broadband MIMO-OFDM wireless communications [J]. Proceedings of the IEEE, 2004, 92(2): 271–294. DOI: 10.1109/JPROC.2003.821912
DOI
|
| 21 |
RASHEED M H, SALIH O M, SIDDEQ M M, et al. Image compression based on 2D discrete Fourier transform and matrix minimization algorithm [EB/OL]. [2021-10-01].
|
| 22 |
WANG Y S, YAO H X, ZHAO S C. Auto-encoder based dimensionality reduction [J]. Neurocomputing, 2016, 184: 232–242. DOI: 10.1016/j.neucom.2015.08.104
DOI
|
| 23 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks [J]. Communications of the ACM, 2017, 60(6): 84–90. DOI: 10.1145/3065386
DOI
|
| 24 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2016: 770–778. DOI: 10.1109/CVPR.2016.90
DOI
|
| 25 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module [C]//Proceedings of the European Conference on Computer Vision. ECCV, 2018: 3–19. DOI: 10.1007/978-3-030-01234-2_1
DOI
|
| 26 |
3GPP. Study on channel model for frequencies from 0.5 to 100 GHz: TR 38.901 [S]. 2017
|