1 |
DANG S P, AMIN O, SHIHADA B, et al. What should 6G Be? [J]. Nature electronics, 2020, 3(1): 20–29. DOI: 10.1038/s41928-019-0355-6
DOI
|
2 |
GUI G, LIU M, TANG F X, et al. 6G: opening new horizons for integration of comfort, security, and intelligence [J]. IEEE wireless communications, 2020, 27(5): 126–132. DOI: 10.1109/MWC.001.1900516
DOI
|
3 |
WANG C G, RAHMAN A. Quantum-enabled 6G wireless networks: opportunities and challenges [J]. IEEE wireless communications, 2022, 29(1): 58–69. DOI: 10.1109/MWC.006.00340
DOI
|
4 |
WANG M H, ZHU T Q, ZHANG T, et al. Security and privacy in 6G networks: new areas and new challenges [J]. Digital communications and networks, 2020, 6(3): 281–291. DOI: 10.1016/j.dcan.2020.07.003
DOI
|
5 |
NGUYEN V L, LIN P C, CHENG B C, et al. Security and privacy for 6G: a survey on prospective technologies and challenges [J]. IEEE communications surveys & tutorials, 2021, 23(4): 2384–2428. DOI: 10.1109/COMST.2021.3108618
DOI
|
6 |
MCMAHAN B, MOORE E, RAMAGE D, et al. Communication-efficient learning of deep networks from decentralized data [EB/OL]. (2016-02-17)[2022-09-01].
|
7 |
YANG Q, LIU Y, CHEN T J, et al. Federated machine learning [J]. ACM transactions on intelligent systems and technology, 2019, 10(2): 1–19. DOI: 10.1145/3298981
DOI
|
8 |
LI T, SAHU A K, TALWALKAR A, et al. Federated learning: Challenges, methods, and future directions [J]. IEEE signal processing magazine, 2020, 37(3): 50–60. DOI: 10.1109/MSP.2020.2975749
DOI
|
9 |
YANG Z H, CHEN M Z, WONG K K, et al. Federated learning for 6G: Applications, challenges, and opportunities [J]. Engineering, 2022, 8: 33–41. DOI: 10.1016/j.eng.2021.12.002
DOI
|
10 |
LIU Y, PENG J L, KANG J W, et al. A secure federated learning framework for 5G networks [J]. IEEE wireless communications, 2020, 27(4): 24–31. DOI: 10.1109/MWC.01.1900525
DOI
|
11 |
CHEN M Z, GÜNDÜZ D, HUANG K B, et al. Distributed learning in wireless networks: recent progress and future challenges [J]. IEEE journal on selected areas in communications, 2021, 39(12): 3579–3605. DOI: 10.1109/JSAC.2021.3118346
DOI
|
12 |
YANG M, WANG X M, QIAN H, et al. An improved federated learning algorithm for privacy preserving in cybertwin-driven 6G system [J]. IEEE transactions on industrial informatics, 2022, 18(10): 6733–6742. DOI: 10.1109/TII.2022.3149516
DOI
|
13 |
YUAN Z W, TANG H, WANG P F, et al. Human-UAV collaborative task scheduling for 360° video generating in intelligent transportation [C]//The 8th International Conference on Virtual Reality (ICVR). IEEE, 2022: 407–414. DOI: 10.1109/ICVR55215.2022.9847919
DOI
|
14 |
WANG P F, YAN Z H, HAN G J, et al. A2E2: Aerial-assisted energy-efficient edge sensing in intelligent public transportation systems [J]. Journal of systems architecture, 2022, 129: 102617. DOI: 10.1016/j.sysarc.2022.102617
DOI
|
15 |
JING Y Q, QU Y B, DONG C, et al. Joint UAV location and resource allocation for air-ground integrated federated learning [C]//IEEE Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM46510.2021.9685150
DOI
|
16 |
WANG P F, PAN Y Z, LIN C, et al. Graph optimized data offloading for crowd-AI hybrid urban tracking in intelligent transportation systems [J]. IEEE transactions on intelligent transportation systems, 2022: Early Access. DOI: 10.1109/TITS.2022.3141885
DOI
|
17 |
TRAN N H, BAO W, ZOMAYA A, et al. Federated learning over wireless networks: optimization model design and analysis [C]//IEEE Conference on Computer Communications. IEEE, 2019: 1387–1395. DOI: 10.1109/INFOCOM.2019.8737464
DOI
|
18 |
HAMER J, MOHRI M, SURESH A T, et al. FedBoost: communication-efficient algorithms for federated learning [C]//International Conference on Machine Learning. ICML, 2020: 3973–3983
|
19 |
ZENG T C, SEMIARI O, MOZAFFARI M, et al. Federated learning in the sky: Joint power allocation and scheduling with UAV swarms [C]//IEEE International Conference on Communications. IEEE, 2020: 1–6. DOI: 10.1109/ICC40277.2020.9148776
DOI
|
20 |
SHIRI H, PARK J, BENNIS M. Communication-efficient massive UAV online path control: Federated learning meets mean-field game theory [J]. IEEE transactions on communications, 2020, 68(11): 6840–6857. DOI: 10.1109/TCOMM.2020.3017281
DOI
|
21 |
PHAM Q V, ZENG M, RUBY R, et al. UAV communications for sustainable federated learning [J]. IEEE transactions on vehicular technology, 2021, 70(4): 3944–3948. DOI: 10.1109/TVT.2021.3065084
DOI
|
22 |
QU Y B, DONG C, ZHENG J C, et al. Empowering edge intelligence by air-ground integrated federated learning [J]. IEEE network, 2021, 35(5): 34–41. DOI: 10.1109/MNET.111.2100044
DOI
|
23 |
JING Y Q, QU Y B, DONG C, et al. Joint UAV location and resource allocation for air-ground integrated federated learning [C]//IEEE Global Communications Conference. IEEE, 2021: 1–6. DOI: 10.1109/GLOBECOM46510.2021. 9685150
DOI
|
24 |
WANG P F, ZHAO Y A, OBAIDAT M S, et al. Blockchain-enhanced federated learning market with social Internet of Things [J]. IEEE journal on selected areas in communications, 2022, 40(12): 3405–3421. DOI: 10.1109/JSAC.2022.3213314
DOI
|
25 |
PHAM Q V, LE M, HUYNH-THE T, et al. Energy-efficient federated learning over UAV-enabled wireless powered communications [J]. IEEE transactions on vehicular technology, 2022, 71(5): 4977–4990. DOI: 10.1109/TVT.2022.3150004
DOI
|
26 |
LU J X, WAN S, CHEN X H, et al. Beyond empirical models: pattern formation driven placement of UAV base stations [J]. IEEE transactions on wireless communications, 2018, 17(6): 3641–3655. DOI: 10.1109/TWC.2018.2812167
DOI
|
27 |
LIU L S, XIONG K, LU Y, et al. Age-constrained energy minimization in UAV-assisted wireless powered sensor networks: a DQN-based approach [C]//IEEE Conference on Computer Communications Workshops. IEEE, 2021: 1–2. DOI: 10.1109/INFOCOMWKSHPS51825.2021.9484487
DOI
|