1 |
GIOTIS K, ARGYROPOULOS C, ANDROULIDAKIS G, et al. Combining openflow and sflow for an effective and scalable anomaly detection and mitigation mechanism on SDN environments [J]. Computer networks, 2014, 62: 122–136. DOI: 10.1016/j.bjp.2013.10.014
DOI
|
2 |
BRAGA R, MOTA E, PASSITO A. Lightweight DDoS flooding attack detection using NOX/OpenFlow [C]//35th Annual IEEE Conference on Local Computer Networks. Denver, USA: IEEE, 2010: 408–415. DOI: 10.1109/LCN.2010.5735752
DOI
|
3 |
DEEPA V, SUDAR K M, DEEPALAKSHMI P. Detection of DDoS attack on SDN control plane using hybrid machine learning techniques [C]//International Conference on Smart Systems and Inventive Technology (ICSSIT). Tirunelveli, India: IEEE, 2018: 299–303. DOI: 10.1109/ICSSIT.2018.8748836
DOI
|
4 |
XU Y H, SUN H T, XIANG F, et al. Efficient DDoS detection based on K⁃FKNN in software defined networks [J]. IEEE access, 2019, 7(160536–160545). DOI: 10.1109/ACCESS.2019.2950945
DOI
|
5 |
MCKEOWN N. Software⁃defined networking [Z]. Infocom Keynote Talk, Rio de Janeiro, Brazil, 2009
|
6 |
ZHENG S J. Research on SDN⁃based IoT security architecture model [C]//IEEE 8th Joint International Information Technology and Artificial Intelligence Conference (ITAIC). Chongqing, China: IEEE, 2019: 575–579. DOI: 10.1109/ITAIC.2019.8785456
DOI
|
7 |
SHIN S, XU L, HONG S, et al. Enhancing network security through software defined networking (SDN) [C]//25th International Conference on Computer Communication and Networks (ICCCN). Waikoloa, USA: IEEE, 2016: 1–9. DOI: 10.1109/ICCCN.2016.7568520
DOI
|
8 |
YANG L, ZHAO H. DDoS attack identification and detection using SDN based on machine learning method [C]//15th International Symposium on Pervasive Systems, Algorithms and Networks (I⁃SPAN). Yichang, China: IEEE, 2018: 174–178. DOI: 10.1109/I-SPAN.2018.00036
DOI
|
9 |
TATANG D, QUINKERT F, FRANK J, et al. SDN⁃guard: protecting SDN controllers against SDN rootkits [C]//2017 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV⁃SDN). Berlin, Germany: IEEE, 2017: 297–302. DOI: 10.1109/NFV-SDN.2017.8169856
DOI
|
10 |
VAITHEESWARAN S S, VENTRAPRAGADA V R. Wind power pattern prediction in time series measuremnt data for wind energy prediction modelling using LSTM⁃GA networks [C]//10th International Conference on Computing, Communication and Networking Technologies (ICCCNT). Kanpur, India: IEEE, 2019: 1–5
|