1 |
MAO Y Y, YOU C S, ZHANG J, et al. A survey on mobile edge computing: the communication perspective [J]. IEEE communications surveys & tutorials, 2017, 19(4): 2322–2358. DOI: 10.1109/comst.2017.2745201
DOI
|
2 |
LETAIEF K B, CHEN W, SHI Y M, et al. The roadmap to 6G: AI empowered wireless networks [J]. IEEE communications magazine, 2019, 57(8): 84–90
|
3 |
KONEČNÝ J, MCMAHAN H B, YU F, et al. Federated learning: strategies for improving communication efficiency [EB/OL]. (2016⁃10⁃18) [2019⁃09⁃17].
|
4 |
MCMAHAN H B, MOORE E, RAMAGE D, et al. Communication⁃efficient learning of deep networks from decentralized data [EB/OL]. (2016⁃02⁃17) [2019⁃09⁃17].
|
5 |
SMITH V, FORTE S, MA C X, et al. CoCoA: a general framework for communication⁃efficient distributed optimization [J]. Journal of machine learning research, 2018, 18(230): 1–49
|
6 |
PARK J, SAMARAKOON S, BENNIS M, et al. Wireless network intelligence at the edge [J]. Proceedings of the IEEE, 2019, 107(11): 2204–2239. DOI: 10.1109/jproc.2019.2941458
DOI
|
7 |
ZHAO Z Y, FENG C Y, YANG H H, et al. Federated⁃learning⁃enabled intelligent fog radio access networks: fundamental theory, key techniques, and future trends [J]. IEEE wireless communications, 2020, 27(2): 22–28. DOI: 10.1109/mwc.001.1900370
DOI
|
8 |
ZHOU Z, CHEN X, LI E, et al. Edge intelligence: paving the last mile of artificial intelligence with edge computing [J]. Proceedings of the IEEE, 2019, 107(8): 1738–1762. DOI: 10.1109/jproc.2019.2918951
DOI
|
9 |
ZHU G X, LIU D Z, DU Y Q, et al. Toward an intelligent edge: wireless communication meets machine learning [J]. IEEE communications magazine, 2020, 58(1): 19–25. DOI: 10.1109/mcom.001.1900103
DOI
|
10 |
KAIROUZ P, MCMAHAN H B, AVENTET B, et al. Advances and open problems in federated learning [EB/OL]. (2019⁃12⁃10) [2019⁃09⁃17].
|
11 |
WANG S Q, TUOR T, SALONIDIS T, et al. Adaptive federated learning in resource constrained edge computing systems [J]. IEEE journal on selected areas in communications, 2019, 37(6): 1205–1221
|
12 |
YANG H H, LIU Z, QUEK T Q S, et al. Scheduling policies for federated learning in wireless networks [J]. IEEE transactions on communications, 2020, 68(1): 317–333
|
13 |
DAI W, ZHOU Y, DONG N Qet al. Toward understanding the impact of staleness in distributed machine learning [C]//International Conference for Learning Representations (ICLR). New Orleans, Louisiana, 2019: 1–6
|
14 |
MA C, LI J, DING M, et al. On safeguarding privacy and security in the framework of federated learning [J]. IEEE network, 2020: 1–7. DOI: 10.1109/mnet.001.1900506
DOI
|
15 |
TRAN N H, BAO W, ZOMAYA A, et al. Federated learning over wireless networks: optimization model design and analysis [C]//IEEE Conference on Computer Communications (INFOCOM). Paris, France, 2019. DOI: 10.1109/infocom.2019.8737464
DOI
|
16 |
CHEN M Z, YANG Z H, SAAD W, et al. A joint learning and communications framework for federated learning over wireless networks [EB/OL]. [2019⁃09⁃17].
|
17 |
YANG H H, ARAFA A, QUEK T Q S, et al. Age⁃based scheduling policy for federated learning in mobile edge networks [C]//IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Barcelona, Spain, 2020. DOI: 10.1109/icassp40776.2020.9053740
DOI
|
18 |
DU Y Q, YANG S, HUANG K B. High⁃dimensional stochastic gradient quantization for communication⁃efficient edge learning [J]. IEEE transactions on signal processing, 2020, 68: 2128–2142.
|
19 |
ZHU G X, DU Y Q, GÜNDÜZ D, et al. One⁃bit over⁃the⁃air aggregation for communication⁃efficient federated edge learning: design and convergence analysis [EB/OL]. [2020⁃01⁃16].
|
20 |
ZHU G X, WANG Y, HUANG K B. Broadband analog aggregation for low⁃latency federated edge learning [J]. IEEE transactions on wireless communications, 2020, 19(1): 491–506. DOI: 10.1109/twc.2019.2946245
DOI
|
21 |
YANG K, JIANG T, SHI Y M, et al. Federated learning via over⁃the⁃air computation [J]. IEEE transactions on wireless communications, 2020, 19(3): 2022–2035. DOI: 10.1109/twc.2019.2961673
DOI
|
22 |
AMIRI M M, GUNDUZ D. Machine learning at the wireless edge: distributed stochastic gradient descent over⁃the⁃air [J]. IEEE transactions on signal processing, 2020, 68: 2155–2169
|
23 |
PHONG L T, AONO Y, HAYASHI T, et al. Privacy⁃preserving deep learning via additively homomorphic encryption [J]. IEEE transactions on information forensics and security, 2018, 13(5): 1333–1345. DOI: 10.1109/tifs.2017.2787987
DOI
|
24 |
DWORK C, MCSHERRY F, NISSIM K, et al. Calibrating noise to sensitivity in private data analysis [M]//Theory of cryptography. Berlin, Heidelberg, Germany: Springer Berlin Heidelberg, 2006: 265–284. DOI: 10.1007/11681878_14
DOI
|