ZTE Communications ›› 2012, Vol. 10 ›› Issue (3): 1-1.
Gee-Kung Chang1 and Jianjun Yu2
Gee-Kung Chang1 and Jianjun Yu2
摘要: This is the second part of a special issue on “100G and Beyond: Trends in Ultrahigh-speed Communications.”The first part of this special issue contained nine fpapers written by service providers, telecommunications equipment manufacturers, and top universities and research institutes. This special issue includes comprehensive reviews as well as original technical contributions covering the rapid advances and broad scope of ultrahigh-speed technologies in optical fiber communications. All papers in this issue have been invited. After peer review, five papers were selected to be published. We hope this issue serves as a timely and high-quality networking forum for scientists and engineers.
The first paper,“FSK Modulation Scheme for High-Speed Optical Transmission,”by Nan Chi et al. from Fudan University, describes the generation, detection, and performance of frequency-shift keying (FSK) for high-speed optical transmission and label switching.
The second paper,“Computationally Efficient Nonlinearity Compensation for Coherent Fiber-Optic System,”by Li et al. from the University of Central Florida, describes how split-step digital backward propagation (DBP) can be combined with coherent detection to compensation for fiber nonlinear impairments.
The third paper,“Flipped-Exponential Nyquist Pulse Technique to Optimize the PAPR in Optical Direct Detection OFDM System,”by Xiao et al. from Hunan University, describes the use of advanced coding to reduce peak-to-average power ratio of the OFDM signal and extend the transmission distance.
The fourth paper,“100Gb/s Nyquist-WDM PDM-16QAM Transmission over 1200-km SMF-28 with Ultrahigh Spectrum Efficiency,”by Dong et al. from ZTE USA, describes the use of pre- and post-equalization to improve transmission system performance and realize ultrahigh spectrum efficiency.
The fifth paper,“Field Transmission of 100G and Beyond: Multiple Baud Rates and Mixed Line Rates Using Nyquist-WDM Technology,”by Jia et al. from ZTE USA, describes a field trial experiment of mixed 100G, 400G, and 1 Tbit/s signal transmission. Joint experiments between ZTE and Deutsche Telecom (DT) have been conducted on long-haul transmission of 100G and beyond over standard single-mode fiber (SSMF) and inline EDFA-only amplification.
We would like to thank all authors for their valuable contributions and all the reviewers for their timely and constructive feedback on all submitted papers. We hope that the contents of this issue are informative and useful for all readers.