|
1.
Parallel Web Mining System Based on Cloud Platform
Shengmei Luo, Qing He, Lixia Liu, Xiang Ao, Ning Li, and Fuzhen Zhuang
ZTE Communications
2012, 10 (4):
45-53.
Traditional machine-learning algorithms are struggling to handle the exceedingly large amount of data being generated by the internet. In real-world applications, there is an urgent need for machine-learning algorithms to be able to handle large-scale, high-dimensional text data. Cloud computing involves the delivery of computing and storage as a service to a heterogeneous community of recipients. Recently, it has aroused much interest in industry and academia. Most previous works on cloud platforms only focus on the parallel algorithms for structured data. In this paper, we focus on the parallel implementation of web-mining algorithms and develop a parallel web-mining system that includes parallel web crawler; parallel text extract, transform and load (ETL) and modeling; and parallel text mining and application subsystems. The complete system enables variable real-world web-mining applications for mass data.
相关文章 |
多维度评价
|
|